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Signal Acquisition Pipeline

Sampling/ 
Measurement Quantization Reconstruction/

Processing

• Typically linear (at least today’s discussion)
• Can be designed to be invertible 

(e.g. Nyquist theorem, compressive 
sensing, signals with finite rate of 
innovation, etc...)

• Classical: Linear reconstruction
• Modern: Non-linear, heavy computation

(e.g., compressive sensing, finite rate 
of innovation)

• Highly non-linear
• Not invertible ⟺ loss of information
• Design to minimize loss

Today
Quantizer Design

Interaction with measurement system
Optimal reconstruction
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SIGNAL REPRESENTATION



�xx y q

Linear Measurement and Reconstruction Model

Sampling/ 
Measurement Quantization Reconstruction/

Processing

Signal: belongs in a vector space 
(e.g., N, N, bandlimited signals)  

�x = SyLinear reconstruction:             .      
(synthesis)

Linear measurement:                .
(analysis, sampling)

y = Ax

S = A†S = A−1In absence of quantization:                     or 

A: Basis expansion (critically sampled) or frame expansion (oversampled)

Biorthogonal 
(dual) basis Dual frame

Quantized 
Measurements
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Frame Representations and Oversampling

y = Ax

yi = �ai,x�

Analysis (Measurement) xy1

y2

a1

a2

�x = Sy

�x =
�

i

yisi

y2s2

y1s1

y3s3

S = A“−1”, i.e. SA = I S = A†

Synthesis (Reconstruction)

�x

�S = A−1
1,2

y1�s1

y2�s2 �x

Canonical
Dual Frame



yk

�x(t)




−a1−

...
−aM−








|
x
|



 =




y1
...

yM



 ⇔ yi = �ai,x�




| |
s1 · · · sM
| |








y1
...

yM



 =




|
x
|



 ⇔ x =
�

i

yisi

yi =

� +∞

−∞
x(t)

1

rT
sinc

� r

T
t− i

�
dt ⇔ yi = �ai,x�

x(t) =
�

i

yisinc
� r

T
t− i

�
⇔ x =

�

i

yisi

Examples of Frames and Frame Expansions

r-times Oversampling:

LPF

! 

x(t) C/D

T/r

LPFD/C

T/r

Analysis 
(Measurement)

Synthesis 
(Reconstruction)

yk

Analysis 
(Measurement)

Synthesis 
(Reconstruction)

Matrix Operations in M!N 

Redundancy
r=M/N



{ai, i = 1, . . . ,M | a ∈ W}
dim(A(W)) ≤ rank(A) ≤ N < Mdim(W) = N

�x = Sy

�x =
�

i

yisi

Frame Expansion/Oversampling: Subspace Mapping

W

Signal Space W Coefficient/Measurement Space M

a3

a1

a2

x

M

Frame:

y3

y1

y2

y = Ax

yi = �ai,x�

A(W )

Image is N-dimensional

Frames provide redundancy 
Mechanism: nullspace of synthesis operator.

Redundancy can be exploited for quantization robustness



SCALAR QUANTIZATION
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⇒ R = MB = M log2 L

ε = O(c−R)

Quantization of Orthonormal Basis Expansions
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Quantization of Frame Representations

Very few quantization cells are intersected!

Q( )x

! 

ˆ x Synthesis
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Oversampling provides robustness, 
but also introduces inefficiency



ε2 = Ω(r−2)

Bounds on Scalar Quantization
Number of cells intersected I(M,N,L):
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• Thao N. T. and Vetterli M., “Lower bound on the mean-squared error in oversampled quantization of periodic signals using vector 
quantization analysis,” IEEE Trans. Info. Theory, vol. 42, no. 2, pp. 469–479, Mar. 1996.

• Boufounos P. T., “Quantization and erasures in frame representations,” MIT D.Sc. Thesis, Cambridge, MA, January 2006.

ε = O(c−R)
Total error                 .                  

(vs.                     for basis expansions)
Oversampled scalar quantization is inefficient!

ε = Ω(1/R)



ε2 = Ω(r−2)

Bounds on Scalar Quantization

Quantization Error Reduction Rate:
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A(W )
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But: Can we achieve it?

q = Q(Ax)

⇒ �x = A†q

⇒ ε2 = Ω(r−1)

Linear reconstruction

�x s.t. q = Q(A�x)

i.e. qi −
α

2
≤ �ai, �x� ≤ qi +

α

2

Solution: “Consistent reconstruction”
Reconstruct a signal that explains quantized measurements

• Thao N. and Vetterli M.,“Reduction of the MSE in R-times oversampled A/D conversion O(1/R) to O(1/R^2),” IEEE Trans. Signal 
Processing, vol. 42, no. 1, pp. 200–203, Jan 1994.
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Oversampling and Quantization
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Can we extend noise shaping to arbitrary frames?

First Order Noise Shaping
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x = y1s1 + y2s2 + y3s3

y2s2

y1s1

y3s3

Error compensation using projections

x = q1s1 + y2s2 + y3s3

1. Quantization −e1s1
q1s1

y�2s2
−c1,2e1s2

y�2 = y2 − e1c1,2

x = q1s1 + y�2s2 + y3s3 − e1(s1 − c1,2s2)

Incremental error : − e1(s1 − c1,2s2) ⇒ c1,2 =
�s1, s2�
�s2�2

2. Compensation using projection

Compensation linear in the error.
Coefficients can be pre-computed.

• Boufounos P.  and Oppenheim A. V., “Quantization noise shaping on arbitrary frame expansions,” EURASIP Journal on Applied Signal 
Processing, Special issue on Frames and Overcomplete Representations in Signal Processing, Communications, and Information Theory, 
vol. 2006, pp. Article ID 53 807, 12 pages, DOI:10.1155/ASP/2006/53 807, 2006.



Higher Order Projections

x

! 

ˆ x 

qi = Q(y�i) = y�i + ei
1. Quantization:

y�i+1 =yi+1 − ci,i+1ei
...

y�i+p =yi+p − ci,i+pei

2. Projection:

�����si −
p�

k=1

ci,i+ksi+k

�����
2

Projection coefficients ci,i+k designed to 
reduce or minimize

x = y1s1 + y2s2 + y3s3

y2s2

y1s1

y3s3

q1s1 −e1s1

• Boufounos P.  and Oppenheim A. V., “Quantization noise shaping on arbitrary frame expansions,” EURASIP Journal on Applied Signal 
Processing, Special issue on Frames and Overcomplete Representations in Signal Processing, Communications, and Information Theory, 
vol. 2006, pp. Article ID 53 807, 12 pages, DOI:10.1155/ASP/2006/53 807, 2006.
• Benedetto J. J., Powell  A. M., and Yilmaz O., “Sigma-Delta quantization and finite frames,” IEEE Trans. Info. Theory, vol. 52, no. 5, pp. 

1990–2005, May 2006. 
• Deift, P., Krahmer, F. and Güntürk, C. S. (2011), “An optimal family of exponentially accurate one-bit Sigma-Delta quantization 

schemes.” Comm. Pure Appl. Math., 64:!883–919. doi:!10.1002/cpa.20367
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System Description
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1. Quantization:
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Frame
Synthesis

Frame
Analysis

! 
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2. Projection (Coefficient Update):
y�i+1 =yi+1 − ci,i+1ei

...

y�i+p =yi+p − ci,i+pei

qi = Q(y�i) = y�i + ei

ε = O(rp+1)Achievable error decay                      .                    
• Benedetto J. J., Powell  A. M., and Yilmaz O., “Sigma-Delta quantization and finite frames,” IEEE Trans. Info. Theory, vol. 52, no. 5, pp. 

1990–2005, May 2006. 



Example: Simulation Results

• Random points on the plane, uniform inside the unit circle.

• Quantization points:  (-7/8, -5/8, -3/8, -1/8, 1/8, 3/8, 5/8, 7/8)

• Optimal ordering (one of many) is: 

s2s3

s4

s5

s6
s7

s1

Histogram of the Error Magnitude

Frame: 7th roots of unity

(s1, s4, s7, s3, s6, s2, s5)



Further Reading
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Sensing Pipeline Paradigm Change

• Compressive sensing has significantly improved our sensing capability
• Two fundamental  Compressive Sensing research aspects

– Hardware modifications for efficient acquisition
– Signal/scene models and processing algorithms

Precise 
Sensing

High-rate 
Acquisition Processing

Mixing and 
measurement

Low-rate 
acquisition

Reconstruction 
and Processing

Compressive sensing

Goal: exploit mixing to simplify sensor or improve sensor specifications (e.g., 
sensor speed, A/D conversion rate, measured bandwidth/resolution)



Signal Structure: Sparsity



• x is K-sparse or K-compressible
• ! random, satisfies a restricted isometry property (RIP)

• M=O(KlogN/K)
• ! also has small coherence

K

M N × 1

K < M � N

Measurement Model: Incoherence [Candes et al]
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Measurement Model: Incoherence [Candes et al]

!

• x is K-sparse or K-compressible
• ! random, satisfies a restricted isometry property (RIP)

• M=O(KlogN/K)
• ! also has small coherence
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RIP/Stable Embedding

• An information preserving projection A preserves the 
geometry of the set of sparse signals

K-dim subspaces

Restricted Isometry Property

!



�x = argmin
x

�x�0 s.t. y ≈ Φx

Reconstruction: Non-linear, Enforcing Structure

• Convex optimization approach:
– Minimize l1 norm: e.g.,

• Greedy algorithms approach:
– Minimize ||y - Ax||2 such that x is sparse

– MP, OMP, ROMP, StOMP, CoSaMP, SP, ALPS, PYAMP (Pick Your Acronym 
Matching Pursuit)

�x = argmin
x

f(x) s.t. �x�0 ≤ K

• More general cost functions,
– GraSP, generalization of CoSaMP

• Reconstruction using sparse approximation:
– Find sparsest x such that y ! Ax

�x = argmin
x

�x�1 s.t. y ≈ Φx

�x = argmin
x

�y −Φx�22 s.t. �x�0 ≤ K



Why l1 relaxation works

y = !x

!"#$ x %$$&'('$$y ! !x

l1 “ball”

Sparse solution

Measurement 
error

K-term approximation error

��x− x�2 ≤ c1
�x− xK�1√

K
+ c2�If ! satisfies the RIP:



Greedy Pursuits Core Idea

• y highly correlated with ! at locations where x is high
• !Ty provides a good idea of these locations

– This is why low coherence is important

–!Ty referred to as proxy for x
• General Strategy: 

– Identify locations 
– Invert the system only on those locations

!

µ � max
i �=j

|�φi,φj�|



GraSP (Gradient Subspace Pursuit)

∇f(�x)

gCompute Gradient at
Current Estimate

Iterate using residual

Select location 
of largest 

2K gradient directions

supp(g|2K)

State Variables: Signal estimate, x support estimate: T

Initialize estimate and support: x=0, T=supp(x)ˆˆ

ˆ

Ω = supp(g|2K) ∪ T

b = arg min
x

f(x)

s.t. xΩc = 0

Add to 
support set

Truncate result

Minimize over
support

�x = b|K
T = supp (b|K)

• S. Bahmani, B. Raj, and P. T. Boufounos, “Greedy Sparsity-Constrained Optimization,” Journal of Machine Learning Research, v. 14, pp. 
807-841, March, 2013.

http://jmlr.csail.mit.edu/papers/v14/bahmani13a.html
http://jmlr.csail.mit.edu/papers/v14/bahmani13a.html


Universality
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• M. A. Davenport, J. N. Laska, P. T. Boufounos, and R. G. Baraniuk, “A simple proof that random matrices are democratic,” Rice 
University ECE Department Technical Report TREE-0906, Houston, TX, November, 2009.

http://arxiv.org/abs/0911.0736
http://arxiv.org/abs/0911.0736


Compressive Sensing and Oversampling

! xT

A = ΦT

A ∈ RM×K

M = O(K logN)

⇒ r = O(logN)

Given support of signal T

Resulting system is oversampled:

Oversampling 
Rate

Oversampling provides robustness, but introduces inefficiency
• Boufounos P., Baraniuk R. G., "Quantization of Sparse Representations." Rice University ECE Department Technical Report 0701. 

Summary appears in Proc. of the Data Compression Conference (DCC '07), March 27-29 2007, Snowbird, UT.
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Part III: 
When quantization meets 

compressed sensing
Laurent Jacques, UCL, Belgium
Petros Boufounos, MERL, USA
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ELEN

Outline:
1. Context 
2. Former QCS methods and performance limits 
3. Consistent Reconstructions
4. Sigma-Delta quantization in CS
5. To saturate or not? And how much?
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ELEN

‣ Generality: 
Intuitively: “Quantization maps a continuous domain to a 
set of finite elements (or codebook)” 

‣ Oldest example: rounding off

What is quantization?

�x�, �x�, . . . R → Z

RM

codebook

q1
q2

qi

Q[x] ∈ {q1, q2, · · · }

5



ELEN

‣ In    , on each component of M - dimensional vectors:

‣ Globally:

Q[z] = q ∈ ΩM ⇔ z ∈

∀λ ∈ R, Q[λ] = qi ⇔ λ ∈ Ri � [ti, ti+1),

∀u ∈ RM , (Q[u])j = Q[uj ]

Example 1: scalar quantization

R
ti ti+1

λ

1-D quantization cell

Ri1 ×Ri2 × · · ·×RiM

M - D quantization cell

What is quantization? ...

RM

qi

:= Q−1[q]
6

Ω = {qi ∈ R : 1 � i � 2B}, (levels)

T = {ti ∈ R : 1 � i � 2B + 1, ti � ti+1} (thresholds)
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qk = (k + 1/2)α
tk = kα

‣ Regular uniform

‣ Regular non-uniform

‣ Non-regular      Petros, Part V

Example 1: scalar quantization

→

In

OutQ

e.g., Lloyd-MaxZ

e.g., wrt an input distribution Z
find minimum distortion, i.e.,

What is quantization? ...

Ω and T optimized

argmin
T ,Ω

EZ�Z −Q[Z]�2

ti ti+1

α In

OutQ
qi

7
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(caveat: not really covered in this tutorial, ... except ΣΔ, see later)

RM

e.g., encoding components ordering + sign 
(permutation frame quantization) 

(Nguyen et al, Goyal, ...)

RM

(non-separable quantization)

Example 2: vector quantization

Quantization = codebook     + quantization cells

(also possible)

e.g., 

What is quantization? ...

Ω R = {Ri ⊂ RM}

argmin
Ω,R

EZ�Z −Q[Z]�2

q1
q2

qi

q1

q2

qi

8



ELEN

Classical Sampling and Quantization
T

Sampling: discretization in time
Lossless at the Nyquist rate

Quantization: discretization in amplitude
Always lossy

Need both for digital data acquisition

t

signal bitsAnti-alias 
(measurement) Quantizer

Low-pass Filter
(linear reconstruction)For reconstruction:

q[n]

q[n]

9
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Compressed sensing theory says:
   “Linearly sample a signal 

at a rate function of 
its intrinsic dimensionality”

Information theory and sensor designer say:
   “Okay, but I need to 

quantize/digitize my measurements!”
   (e.g., in ADC) 

Compressive Sampling and Quantization

01011000111

RM? Φ

10
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Natural questions: 

‣ How to integrate 
quantization in CS?

‣ What do we loose?

‣ Are they some theoretical limitations? 
(related to information theory? geometry?) 

‣ How to minimize quantization effects in the reconstruction?

The Quantized CS Problem (QCS)

RM?

01011000111

Q[y = Φx]

11
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Finite codebook ⇒ x̂ �= x

Decoderx CS Q x̂

RN RM Ω RN

scalar or vector 
quantization

codebook

e.g., basis pursuit,
greedy methods, ...

With no additional noise:

(i.e., impossibility to encode continuous domain in a finite number of elements)

y = Φx q = Q[y]

QCS: a system view

13
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With no additional noise:

Finite codebook ⇒ x̂ �= x

Decoderx CS Q x̂

RN RM Ω RN

codebook

e.g., basis pursuit,
greedy methods, ...

Objective: Minimize �x̂− x�
How? 
Where to act?
Change CS, Q or decoder?           
           Some of them? all?given a certain number of: 

bits, measurements, or bits/meas.

y = Φx q = Q[y]

QCS: a system view

14
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2. Former QCS methods and 
performance limits

15
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Scalar quantization in CS

Important points:
‣ Definition of      independent of M 
‣ B bits per measurement
‣ Total bit budget: R = BM
‣ No further encoding (e.g., entropic) 

(e.g., Φij ∼iid N (0, 1))Φ
→ preserves measurement dynamic!

Turning measurements into bits     scalar quantization    →

qi = Q[(Φx)i] = Q[�φi,x�] ∈ Ω ⊂ R

q = Q
�
Φx

�
∈ Ω = ΩM ,

16
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q = Q
�
Φx

�
= Φx + n

‣ Quantization is like a noise

Former solution (Candès, Tao, ...)
Scalar quantization in CS ...

quantization
distortion

17
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‣ Quantization is like a noise

and CS is robust (e.g., with basis pursuit denoise)

Former solution (Candès, Tao, ...)

�2 − �1 instance optimality:

Scalar quantization in CS ...

How to find it?

q = Q
�
Φx

�
= Φx + n

If �n� � � and 1√
M

Φ is RIP(δ, 2K) with δ �
√

2− 1, then

�x̂− x� � C �√
M

+ D e0(K),

for some C, D > 0 and e0(K) = �x− xK�1/
√

K.

x̂ = argmin
u∈RN

�u�1 s.t. �Φu− q� � � (BPDN)

19
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1. For uniform quantization, by construction:

Former solution (Candès, Tao, ...)
Scalar quantization in CS ...

⇒ �n�2 � M�n�2∞ � Mα2/4

and plug this upper bound in BPDN

can be improved!

ti ti+1

α In

OutQ
qi

qk = (k + 1/2)α
tk = kα

ni = Q[(Φx)i]− (Φx)i

∈ qki −Rki = [−α/2,α/2]

⇒ �n�∞ ≤ α/2

�?

21
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2. For uniform quantization, uniform model!

Former solution (Candès, Tao, ...)

⇒ E|ni|2 = α2/12

⇒ �n�2 � E�n�2 + κ
�

Var�n�2

� M α2

12 + κ
√

M α2

6
√

5

with Pr > 1− e−2κ2

= �22 �M α2

12

Scalar quantization in CS ...

(Chernoff-Hoeffding, bounded RVs)

ni = Q[(Φx)i]− (Φx)i

∈ qki −Rki = [−α/2, α/2]
∼iid Uniform([−α/2, α/2])

−α/2 α/2

(HRA - high resolution assumption)

and plug this upper bound in BPDN

ti ti+1

α In

OutQ
qi

qk = (k + 1/2)α
tk = kα

�?

23
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�x̂− x� � C α + D e0(K),

‣ Therefore,

‣ Assuming :
‣  
‣ B bits per measurements

‣ Equivalently: 

Former solution (Candès, Tao, ...)

(for BPDN with �2, under prev. cond.)

Scalar quantization in CS ...

from BPDN �2 − �1 instance optimality:

bounded dynamics:

as soon as RIP holds: M = O(K log N/K)

(e.g., by discarding saturation) 
(see later)

BPDN RMSE � O(2−R/M ) + e0(K)

for C,D > 0

for C’,D > 0

25

�Φx�∞ = max
j

|(Φx)i| � ρ

⇒ α � ρ21−B

⇒ BPDN RMSE � C � 2−B + D e0(K)

for a rate R = BM bits (total ”bid budget” for all meas.)
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E nnT = σ2IdM×M

‣ Let a fixed K-sparse
‣ Oracle: you know 
‣ Noisy measurements (random noise):

‣ Assume:
‣ Compute LS solution:

‣ Then:

‣ for QCS:

RMSE Lower bound?
Scalar quantization in CS ...

y = ΦT x + n,

1√
M

Φ is RIP(K, δK) and RIP(1, δ1)

Given Φ ∈ RM×N with Φij ∼iid N(0, 1)

with

x̂T = Φ†
T y = (Φ∗

T ΦT )−1Φ∗
T y

x̂T c = 0

for oversampling factor 

x ∈ RN

pseudo-inverse 

T = suppx

from [Needell, Tropp, 08]
MSE � 1

1−δK
σ2&

&

(as for BPDN)

28

r = M/K

MSE = En�x− x̂�2 � r−1 σ2 ( 1−δ1
1+δK

)

⇒ RMSE = Ω(r−1/2 2−B) RMSE = O(2−B)
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3. Consistent Reconstructions

29
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‣ Problem in previous case: if     solution of BPDN,
‣ no Quantization Consistency (QC):

‣     constraint ≈ Gaussian distribution (MAP - cond. log. lik.)
‣ But why looking for consistency ?

Consistent reconstructions in CS?

�2

    sensing information is fully not exploited!⇒

V. K Goyal, M. Vetterli, N. T. Thao, “Quantized Overcomplete Expansions in RN: Analysis, Synthesis, and Algorithms” , IEEE Tran. IT, 44(1), 1998

� Q[Φx̂] = Q[Φx]�Φx̂−Q[Φx]� � �2
(from BPDN constraint)

x̂

Q[Φx̂] �= Q[Φx]

32

Proposition (Goyal, Vetterli, Thao, 98) If T is known (with |T | = K), the best
decoder Dec() provides a x̂ = Dec(y,Φ) such that:

RMSE = (E�x− x̂�2)1/2 � r−1α,

where E is wrt a probability measure on xT in a bounded set S ⊂ RK .

This bound is achieved, at least, for ΦT = DFT ∈ RM×K , when Dec() is consistent.
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‣ Modify BPDN [W. Dai, O. Milenkovic, 09]

x̂ = argmin
u∈RN

�u�1 s.t. Q[Φu] = q

In quest of consistency...

convex set in RM

y+ modified greedy algo: 
“subspace pursuit”

∃ numerical methods

⇔ Φu ∈ Q−1[q]

�2 → �∞

⇔ �Φu− q�∞ ≤ α/2
(if uniform quant.)

33
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‣ Modify BPDN [W. Dai, O. Milenkovic, 09]

In quest of consistency...

W. Dai, H. V. Pham, and O. Milenkovic, “Quantized Compressive Sensing”, preprint, 2009

BPDN

SP

unif
non-unif Mod. BPDN

Mod. SP

Simulations: M = 128, N = 256, K = 6, 1000 trials ⇒ λ � 20

x̂ = argmin
u∈RN

�u�1 s.t. Q[Φu] = q

lo
g

R
M

SE

lo
g

R
M

SE

�2 → �∞

BPDN

34
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How to find it? again, uniform model:

x̂ = argmin
u∈RN

�u�1 s.t. �q −Φu�p ≤ �p

‣ Distortion model:

‣ Observation:
‣ Reconstruction: Generalizing BPDN with BPDQ

�Φx− q�∞ ≤ α/2

q = Q[Φx] = Φx+ n, ni ∼ U(−α
2 ,

α
2 )

λ

Q

Towards
Related to GGD MAP 

p =∞

[LJ, Hammond, Fadili, 2009, 2011]
Dequantizing CS? �2 → �p (p ≥ 2)

α

�p(α) −→
p→∞

α
2 = QC !Note:

ni = Q[(Φx)i]− (Φx)i

∈ qki −Rki = [−α/2, α/2]
∼iid Uniform([−α/2, α/2])

−α/2 α/2

Estimating pth moment:
�p(α) =

α
2(p+1)1/p

�
M + κ(p+ 1)

√
M

�1/p

works with Pr ≥ 1− e−2κ2
⇒

37
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‣ Distortion model:

‣ Observation:
‣ Reconstruction: Generalizing BPDN with BPDQ

⇒ �x− x̂� = O(α/
√
p+ 1)

λ

Q

But no free lunch: for 

�� Another reading: limited range of valid p for a given M (and K)!

∃ µp > 0, δ ∈ (0, 1),
√
1− δ �v�2 � 1

µp
�Φv�p �

√
1 + δ �v�2,

for all K sparse signals v.

If     is RIPp of order K, i.e., Φ

Towards
Related to GGD MAP 

p =∞

�2 → �p (p ≥ 2)Dequantizing CS?
[LJ, Hammond, Fadili, 2009, 2011]

x̂ = argmin
u∈RN

�u�1 s.t. �q −Φu�p ≤ �p

�Φx− q�∞ ≤ α/2

q = Q[Φx] = Φx+ n, ni ∼ U(−α
2 ,

α
2 )

α

BPDQ Stability ?

Φ Gaussian

40

Gain over BPDN (for tight          )�p(α,M)

⇒ �x− x̂� = O(�p/µp)
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Dequantizing CS?

! N=1024, K=16, Gaussian  
! 500 K-sparse (canonical basis) 
! Non-zero components follow 
! Quantiz. bin width 

BPDN

p = 3

p = 4

p = 10

S
N

R
(d

B
)

m/K

24

28

32

36

10 15 20 25 30 35 40
M

N (0, 1)

[LJ, Hammond, Fadili, 2009, 2011]

Histograms of
α−1(q −Φx̂)i

Φ

α = �Φx�∞/40

M → 2M, α cst.
�

α → α/2, M cst.
0 0.5 1-0.5-1

BPDN

0 0.5 1-0.5-1

BPDQ10

LJ, D. Hammond, J. Fadili “Dequantizing compressed sensing: When oversampling and non-gaussian 
constraints combine.” Information Theory, IEEE Transactions on, 57(1), 559-571.

42
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BPDN-TV

BPDQ10 -TV

SNR: 8.96 dB

SNR: 12.03 dB

! Synthetic Angiogram [Michael Lustig 07, SPARCO],
!    : Random Fourier Ensemble
! N/M = 8
! Decoder:
! Quantiz. bin width = 50 (i.e. 12 bins)

∆TV,p(y, �p)

A bit outside the theory...

Dequantizing CS?
[LJ, Hammond, Fadili, 2009, 2011]

Φ

LJ, D. Hammond, J. Fadili “Dequantizing compressed sensing: When oversampling and non-gaussian 
constraints combine.” Information Theory, IEEE Transactions on, 57(1), 559-571.

43
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Possible!
1. Use compander formalism:

2. Redefine q : (post-sensing)

3. Reweight the bins:

4. Solve: 

Non-uniform dequantization?

Q = G−1 ◦Qα ◦ G
CompressorExpander

Under High Resolution Assumption (HRA)
= high B

LJ, D. Hammond, J. Fadili, “Stabilizing Nonuniformly Quantized Compressed Sensing with Scalar Companders”, arXiv:1206.6003 (2012).

→ kind of noise stabilization operation (“equi-p-distortion”)

� · �p → �diag(w) · �p =: � · �p,w

with (qp)i minimizing pth moment in each bin.

q → qp = Qp[q] = Qp[Φx]

x̂ = argmin
u∈RN

�u�1 s.t. �q −Φu�p,w ≤ �p

wi(p) := G��(qp)i
�(p−2)/pwith:

qi,pti ti+1

pdf ϕ0
λ

Q[λ]

Q∞[λ]

Qp[λ]

qi qi,∞

49
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Non-uniform dequantization?
‣ Stability?  Well ... need a more general RIP

Then,

RIP(�p,w, �2|K, δ, µ) ∃ µ > 0, δ ∈ (0, 1)
√

1− δ �v�2 � 1
µ�Φv�p,w �

√
1 + δ �v�2

for all K sparse signals v.

Given Qp[·], w(p) ∈ RM
+ and �p as before,

GBPDN robustness provides:

�x∗ − x� �
B,M

4 c� 2−B
√
p+1

+ 2 e0(K),

with c� = (9/8)(eπ/3)1/2 < 1.8981.

⇒ M = O((θ(w)K logN/K)p/2)

with: θ(w) � M
2/p�w�2∞/�w�2p (= 1 if wi =cst)

50
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4. Sigma-Delta quantization in CS

51
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Context:
‣ Former attempts: (see prev. slides)

CS + uniform scalar quantization (or pulse code modulation - PCM) 

‣ No improvement if M increases!  
‣ Can we do better? 

‣ Staying with PCM, 
‣ Solution: replacing PCM by ΣΔ quantization!

For K-sparse signals: �Qα[Φx]−Φx�2 � c
√

Mα ⇒ �x∗ − x� � Cα

and for high λ, �Qα[Φx]−Φx�p � cM1/pα ⇒ �x∗ − x� � Cα/
√

p + 1

(with RIP)

(with RIPp)

(Goyal-Vetterli-Thao lower bound)

[S. Güntürk, A. Powell, R. Saab, Ö. Yılmaz]

53

Can we have �x∗ − x� � O(r−sα) for some s > 0 ?

s � 1
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‣ PCM: Signal sensing + unif. quantization

‣ In CS, this could be used if signal support was known
(see before)

ΣΔ quantization (reminder)
(step α)

(or canonical dual of the frame A)
(least square solution)

qk = QPCM[yk] := argmin
u∈αZ

|yk − u|, 1 � k � M

q = QPCM[y] with

x ∈ RK y = Ax ∈ RM

54

Let A#, a left inverse of A, i.e., A#A = Id.

x̂ := A#q ⇒ �x− x̂� = �A#(y − q)�

Taking (Moore-Penrose) pseudo-inverse: A# = A† = (A∗A)−1A∗

minimize �A#(y − q)�!

quant. noise
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ΣΔ quantization (reminder)
‣ ΣΔ ≡ noise shaping! Enjoy of:
‣ freedom to pick q
‣ freedom to take another left inverse

‣ 1st order ΣΔ: (in 1-D) Quantizing the sequence {yj : j � 0}

⊕
⊕+ −

+

+

z−1

Q
yj qj with:

bigger than α but still O(α)

∈ αZM

56

A#

Use of state variables {ρj} (1-step memory):

find qj : qj = Q(1)
Σ∆[yj ] := argminu∈αZ |ρj−1 + yj − u|

find ρj : (∆ρ)j = ρj − ρj−1 = yj − qj (difference eq.)

= QPCM[ρj−1 + yj ]

yj + ρj−1

ρj−1

ρj

|ρj | � α

|yj − qj | � 2α
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ΣΔ quantization (reminder)
‣ ΣΔ ≡ noise shaping! Enjoy of:
‣ freedom to pick q
‣ freedom to take another left inverse

‣ s th order ΣΔ: (in 1-D) Quantizing the sequence {yj : j � 0}

⊕
⊕+ −

+

+

z−1

Q
yj qj with:

bigger than α but still O(α)

yj + Σ · · ·

PCM is
0th order Σ∆

Remark:

∈ αZM

57

A#

Use of state variables {ρj} (s-step memory):

find qj : qj = Q(s)
Σ∆[yj ] := argminu∈αZ |

�s
i=1(−1)i−1

�s
i

�
ρj−n + yj − u|

find ρj : (∆sρ)j = yj − qj (sth order difference eq.)

|ρj | � α

|yj − qj | � 2s−1α
ρj−1

ρj
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ΣΔ quantization (reminder)
‣ ΣΔ ≡ noise shaping! Enjoy of:
‣ freedom to pick q
‣ freedom to take another left inverse

‣ s th order ΣΔ:

Pseudo-inverse
A† = (A∗A)−1A∗

Sobolev duals

∈ αZM

60

A#

Most important fact: (∆sρ)j = yj − qj ⇔ Dsρ = y − q

x̂ := A#q ⇒ �x− x̂� = �A#Ds(y − q)�

minimize �A#Ds(y − q)�!

Asob,s = (D−sA)†D−s
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ΣΔ quantization (reminder)
‣ ΣΔ ≡ noise shaping! Enjoy of:
‣ freedom to pick q
‣ freedom to take another left inverse

‣ s th order ΣΔ:

∈ αZM

61

A#

Most important fact: (∆sρ)j = yj − qj ⇔ Dsρ = y − q

Asob,s = (D−sA)†D−sx̂ = Asob,sq

Proposition Let A ∈ RM×K with Aij ∼iid N (0, 1).
For any κ ∈ (0, 1), if r := M/K � c(log M)1/(1−κ), then with Pr > 1−e−c�M/rκ

,

�x̂− x� � Cs r−κ(s− 1
2 )α,

for some c, c�, Cs > 0. proof: show that
σmin(D−sA) > C �

s rκ(s− 1
2 )
√

M
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ΣΔ quantization in CS

Two-steps procedure:
1. find the support T of x : coarse approx. with BPDN

2. compute

y = Φx ∈ RMx ∈ ΣK ⊂ RN

proof: Union bound on any
K-column subset of Φ
+ proba having good support.

62

q = Q(s)
Σ∆[y]

�y − q� � 2s−1 α
√

M

x̂ := (ΦT )sob,sq = (D−sΦT )†D−sq

Proposition Let Φ ∈ RM×K with Φij ∼iid N (0, 1). Suppose κ ∈ (0, 1) and
r := M/K � c(log M)1/(1−κ) for c > 0. Then, ∃ c�, C, Cs > 0 such that, with
Pr > 1− e−c�M/rκ

, for all x ∈ ΣK s.t. mini∈supp x |xi| � Cα,

�x̂− x� � Cs r−κ(s− 1
2 )α.
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ΣΔ quantization in CS (Simulations)

Güntürk, C. S., Lammers, M., Powell, A. M., Saab, R., & Yılmaz, Ö. (2013). Sobolev duals for random frames and ΣΔ 
quantization of compressed sensing measurements. Foundations of Computational Mathematics, 13(1), 1-36.

M ∈ {100, 200, · · · , 1000}, K = 10 and 1000 trials (xi ∈ {0,±1/
√

K}, �x� � 1, α = 10−2)

lo
g

R
M

SE BPDN

s = 1
s = 0

s = 2better than
expected!

63

r

- - - : c r−s, s ∈ {0.5, 1, 2}
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5. To saturate or not? 
And how much?

64
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Uniform quantization:
‣     quantization interval
‣ error per measurement bounded:

Saturation phenomenon:

Finite Dynamic Range Quantization:
‣ G “saturation level”
‣ B bit rate (bits per measurement)
‣ quantization interval is
‣ measurements above G saturate
‣ saturation error is unbounded

CS guarantees are for 
bounded errors only!

...

...

α 2α 3α

α/2

3α/2

5α/2

λ

Qα[λ]

...

α 2α

α/2

3α/2

λ

Qα[λ]
G− α/2

...

G· · ·

...

−G

−G + α/2

· · ·

|λ−Qα[λ]| � α/2

α

but all practical quantizers 
have finite dynamic range!

65

α = 2−B+1G
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Democracy in Action
(i) Saturation Rejection:

Simply discard saturated 
measurements and 
corresponding rows of 

discard
saturated 
measurements

discard
row of Φ 

“democratic measurements”
each measurement has roughly same amount of information

[Laska, Boufounos, Davenport, Baraniuk 12]

(ii) Saturation Consistency:
Include saturated measurements as inequality constraint

xy

Measurement error 
term (quantization)

Saturation consistency
constraint

RIP holds on row subsets of Φ

67
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Experimental Results

Note: optimal performance requires 10% saturation

15dB

SN
R

Sa
tu

ra
tio

n 
Ra

te

Threshold G

69

J.N.  Laska, P.T. Boufounos, M.A. Davenport, R.G.Baraniuk,  “Democracy in action: Quantization, saturation, and compressive sensing”. Applied and Computational Harmonic Analysis, 31(3), 429-443. (2011)
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Experimental Results

‣  Majority of measurements saturate

The “saturation gap”

SN
R

Sa
tu

ra
tio

n 
Ra

te

Threshold G
‣  Recovery fails

70

J.N.  Laska, P.T. Boufounos, M.A. Davenport, R.G.Baraniuk,  “Democracy in action: Quantization, saturation, and compressive sensing”. Applied and Computational Harmonic Analysis, 31(3), 429-443. (2011)
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Experimental Results

Is recovery possible in 
high saturation regimes?
→ yes! 1-bit analysis!

‣  Majority of measurements saturate

The “saturation gap”

SN
R

Sa
tu

ra
tio

n 
Ra

te

Threshold G
‣  Recovery fails

71

J.N.  Laska, P.T. Boufounos, M.A. Davenport, R.G.Baraniuk,  “Democracy in action: Quantization, saturation, and compressive sensing”. Applied and Computational Harmonic Analysis, 31(3), 429-443. (2011)
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Outline:
1. Context
2. Theoretical performance limits
3. Stable embeddings: angles are preserved
4. Generalized Embeddings
5. 1-bit CS Reconstructions? 
6. Playing with thresholds in 1-bit CS
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−
+ + + + + + + +

− − −− − − − − − −
+

Signal Sampling

‣ Doable? 
‣ For which 
“Sampling”?

‣ Which accuracy? 

t n∆t

n∆t

s(t) sn

1-bit quantization
sign (sn)� 0

� 0

79

Central question: 1-bit sampling?

Reconstruction?
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[FIG1] Stated number of bits versus sampling rate.

0

S
ta

te
d 

N
um

be
r 

of
 B

its
 (

N
)

25

23

21

19

17

15

13

11

9

7

10 20 30 40 50

10log(fs) (dBsps)

60 70 80 90 100
5 P Degradation

Flash
Theoretical slope = 1/3 b/dB

Actual Slope 
= 1/2.3 b/dB

Folding
Half-Flash
Pipelined
SAR
Sigma-Delta
Unknown

Why 1-bit?  Very Fast Quantizers!

[From “Analog-to-digital converters” B. Le, T.W. Rondeau, J.H. Reed, and C.W.Bostian, IEEE Sig. Proc. Magazine, Nov 2005]
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IEEE SIGNAL PROCESSING MAGAZINE [71] NOVEMBER 2005

The pipelined structure and unknown structure have the
best overall performance, so that they are best suited for
applications with high performance requirements, such as
wireless transceiver applications and military use [3]. SAR
ADCs have widely ranging sampling rates, though they are
not the fastest devices. Still, these devices are popular for
their range of speeds and resolutions as well as low cost and
power dissipation. It can be seen that there is a borderline of
sampling rate at around 30 Ms/s separating the sigma-delta
and flash ADCs. Sigma-delta ADCs have the highest resolu-
tion with relatively low sampling rates from kilosamples per
second to megasamples per second, while flash ADCs have
the highest sampling rates up to
Gsps due to their parallel structure
but with a resolution limited to no
more than 8 b due to nonlinearity.
Between these two structures are
unknown structures compromising
speed and resolution. 

We are also interested in the
envelope of the sample distributions
in this plot since such an envelope
indicates the performance limita-
tions. It is reasonable to extract the
envelope information based on the
ADCs with the highest performance
to postulate the design challenges
and technology trends.

In Figure 1, if Walden’s claim that P
is relatively constant is true, according
to (1), the envelope line should show
that a 3 dBs/s increment in fs corre-
sponds to a 1-b reduction in resolution.
However, Figure 1 shows that the real
tradeoff is 1 b/2.3 dBs/s. Compared to
the 1 b/3 dBs/s slope hypothesis, there
is an improvement in P at low sam-
pling rates and degradation at high
sampling rates. This trend indicates
that the ADC performance boundary is
varying with sampling rate, as illustrat-
ed by Figure 2 where ENOB is plotted
versus the sampling rate.

As stated previously, noise and dis-
tortion cause most of the performance
degradation in practical ADCs. The
internal sample-hold-quantize signal
operations are nonlinear, and those
effects are represented as equivalent
noise effects so that they can be unified
into noise-based equations to simplify
the performance analysis. Therefore,
besides thermal noise, we have two
additional noise sources, quantization
noise [2] and aperture-jitter noise [1].

THERMAL NOISE
Thermal noise by itself [1] has a 1 b/6 dBs/s relationship to sam-
pling frequency assuming Nyquist sampling [2]. However, it is
usually overwhelmed by the capacitance noise since the S/H stage,
as the input stage of an ADC, shows strong capacitive characteris-
tics. Therefore, the capacitance noise (modeled as kT/C noise [4],
where k is Boltzmann’s constant, T is the temperature, and C is
the capacitance) is usually assumed as the input noise floor.

QUANTIZATION NOISE
The signal distortion in quantization is modeled as quantization
noise with a signal-to-quantization-noise ratio (SQNR) definition of

[FIG1] Stated number of bits versus sampling rate.
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1-bit Compressed Sensing

= sign

Φ x

M M ×N

N

sign t =

�
1 if t > 0
−1 if t � 0 component-wisewith:

q
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1-bit Compressed Sensing

= sign

Φ x

M M ×N
N

O
v
e
r
s
a
m

p
li
n
g

in
M

�

But, which information inside q ?M -bits!

q
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1-bit Compressed Sensing

= sign

Φ x

M M ×N
N

O
v
e
r
s
a
m

p
li
n
g

in
M

�

M -bits!

Computational
bits matter!

q
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1-bit Compressed SensingComputational
bits matter!

= sign

Φ x

M M ×N
N

O
v
e
r
s
a
m

p
li
n
g

in
M

q

Warning 1: signal amplitude is lost!

q = sign (Φ(λx)) = sign (Φx), ∀λ > 0

⇒ Amplitude is arbitrarily fixed

Examples : �x� = 1 or �Φx�1 = 1
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1-bit Compressed SensingComputational
bits matter!

= sign

Φ x

M M ×N
N

O
v
e
r
s
a
m

p
li
n
g

in
M

q

Warning 2: !forbidden sensing!       
Let xλ := (1, λ, 0, · · · , 0)T ∈ RN

and Φ ∈ {±1}M×N (e.g., Bernoulli).

We have �x0 − xλ� = λ

but q = sign (Φx0) = sign (Φxλ), ∀|λ| < 1

⇒ No hope to distinguish them by increasing M !

[Plan, Vershynin, 11]
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2. Theoretical performance limits
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Lower bound: cell intersection viewpoint
Measurement  
Space  
3 

+ =

Not all quantization cells intersected! 
2K

�
N

K

��
M

K

�
no more than C =

⊂ ΦΣK

2�

→ Lower bound on any 1-bit reconstruction error

⇒ � = Ω(K/M)

Most efficient �-covering of SN−1 ∩ ΣK with �-caps
⇒ lower bound on C by “vol(SN−1 ∩ ΣK)/vol(�-cap)”
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Reaching this bound ? Carl Friedrich Gauss:
“1-bit CS? I solved it at 
breakfast by randomly 
slicing my orange!”
http://www.gaussfacts.com
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Reaching this bound ? Carl Friedrich Gauss:
“1-bit CS? I solved it at 
breakfast by randomly 
slicing my orange!”
http://www.gaussfacts.com

x

x on S2

M vectors:
{ϕi : 1 � i � M}

iid Gaussian
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ϕ1

x�ϕ1,x� > 0

{u
: �ϕ

1
,u

� >
0}

{u
: �ϕ

1
,u

� �
0}

1-bit Measurements

x on S2

M vectors:
{ϕi : 1 � i � M}

Reaching this bound ?

iid Gaussian

Carl Friedrich Gauss:
“1-bit CS? I solved it at 
breakfast by randomly 
slicing my orange!”
http://www.gaussfacts.com
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ϕ1

ϕ2

x�ϕ1,x� > 0
�ϕ2,x� > 0

1-bit Measurements

x on S2

M vectors:
{ϕi : 1 � i � M}

Reaching this bound ?

iid Gaussian

Carl Friedrich Gauss:
“1-bit CS? I solved it at 
breakfast by randomly 
slicing my orange!”
http://www.gaussfacts.com
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ϕ1

ϕ2

ϕ3

x�ϕ1,x� > 0
�ϕ2,x� > 0
�ϕ3,x� � 0

1-bit Measurements

x on S2

M vectors:
{ϕi : 1 � i � M}

Reaching this bound ?

iid Gaussian

Carl Friedrich Gauss:
“1-bit CS? I solved it at 
breakfast by randomly 
slicing my orange!”
http://www.gaussfacts.com

96

http://www.gaussfacts.com
http://www.gaussfacts.com


ELEN

�ϕ1,x� > 0
�ϕ2,x� > 0
�ϕ3,x� � 0

ϕ1

ϕ2

ϕ3

x

ϕ4

�ϕ4,x� > 0

1-bit Measurements

x on S2

M vectors:
{ϕi : 1 � i � M}

Reaching this bound ?

iid Gaussian

Carl Friedrich Gauss:
“1-bit CS? I solved it at 
breakfast by randomly 
slicing my orange!”
http://www.gaussfacts.com
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�ϕ1,x� > 0
�ϕ2,x� > 0
�ϕ3,x� � 0
�ϕ4,x� > 0

ϕ1

ϕ2

ϕ3

x

ϕ4

ϕ5

�ϕ5,x� > 0

1-bit Measurements

x on S2

M vectors:
{ϕi : 1 � i � M}

Reaching this bound ?

iid Gaussian

Carl Friedrich Gauss:
“1-bit CS? I solved it at 
breakfast by randomly 
slicing my orange!”
http://www.gaussfacts.com
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�ϕ1,x� > 0
�ϕ2,x� > 0
�ϕ3,x� � 0
�ϕ4,x� > 0
�ϕ5,x� > 0

Smaller and smaller 
when M increases

1-bit Measurements

...

{u : sign (Φu) = sign (Φx)}

ϕ1

ϕ2

ϕ3

x

ϕ4

ϕ5

x on S2

M vectors:
{ϕi : 1 � i � M}

Reaching this bound ?

iid Gaussian

Carl Friedrich Gauss:
“1-bit CS? I solved it at 
breakfast by randomly 
slicing my orange!”
http://www.gaussfacts.com
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�ϕ1,x� > 0
�ϕ2,x� > 0
�ϕ3,x� � 0
�ϕ4,x� > 0
�ϕ5,x� > 0

1-bit Measurements

... Lower bound on 
this width?

Smaller and smaller 
when M increases

{u : sign (Φu) = sign (Φx)}

ϕ1

ϕ2

ϕ3

x

ϕ4

ϕ5

x on S2

M vectors:
{ϕi : 1 � i � M}

Reaching this bound ?

iid Gaussian

ΣK

Carl Friedrich Gauss:
“1-bit CS? I solved it at 
breakfast by randomly 
slicing my orange!”
http://www.gaussfacts.com
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Reaching this bound ?

Let A(·) := sign (Φ ·) with Φ ∼ NM×N (0, 1).

for any two unit K-sparse vectors x and s,

A(x) = A(s) ⇒ �x− s� ≤ �

⇔ � = O
�
K
M log MN

K

�

If M = O(�−1K logN ), then, w.h.p,

almost optimal

103

Carl Friedrich Gauss:
“1-bit CS? I solved it at 
breakfast by randomly 
slicing my orange!”
http://www.gaussfacts.com

Note: You can even afford a small error, i.e.,
if only b bits are different              ⇒ �x− s� � K+b

K �between A(x) and A(s)
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3. Stable embeddings: 
angles are preserved
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‣ Metrics of interest:

‣ Known fact: if 

Starting point: Hamming/Angle Concentration

Φ ∼ NM×N (0, 1)

dH(u,v) =
1
M

�
i
(ui ⊕ vi) (norm. Hamming)

dang(x, s) =
1
π

arccos(�x, s�) (norm. angle)

Let Φ ∼ NM×N (0, 1), A(·) = sign (Φ ·) ∈ {−1, 1}M and � > 0.
For any x, s ∈ SN−1, we have

PΦ

� �� dH

�
A(x), A(s)

�
− dang(x, s)

�� � �
�

� 1− 2 e−2�
2
M .

[e.g., Goemans, Williamson 1995]

Thanks to A(.), Hamming distance 
concentrates around vector angles!  

x
s

random plane

ϕ
+−
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Binary    Stable Embedding

‣ Corollary : for any algorithm with output      
jointly K-sparse and consistent                       ,  

‣ If limited binary noise, d ang still bounded
‣ If not exactly sparse signals (but almost), d ang still bounded

� (B�SE)

x∗

(i.e., A(x∗) = A(x))

dang(x,x∗) � 2�!

A mapping A : RN → {±1}M is a binary �-stable embedding (B�SE) of
order K for sparse vectors if

dang(x, s)− � � dH(A(x), A(s)) � dang(x, s) + �

for all x, s ∈ SN−1 with x± s K-sparse.
kind of “binary restricted (quasi) isometry”
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B�SE existence? Yes! 

Proof sketch:

1) Generalize

PΦ

� �� dH

�
A(x), A(s)

�
− dang(x, s)

�� � �
�

� 1− 2 e
−2�

2
M

.

to

PΦ

� �� dH

�
A(u), A(v)

�
− dang(x, s)

�� � � + (π

2 D)1/2
δ

�
� 1− 2 e

−2�
2
M

.

for u,v in a D-dimensional neighborhood of width δ around x and s resp.

2) Covers the space of ”K-sparse signal pairs” in RN by

O
��

N

K

�
δ−2K

�
= O(( eN

Kδ2 )K) neighborhoods.

3) Apply Point 1 with union bound, and “stir until the proof thickens”

x
s

random plane

ϕ
+−

δ

                              

Let Φ ∼ NM×N (0, 1), fix 0 � η � 1 and � > 0. If

M � 4
�2

�
K log(N) + 2K log( 50

� ) + log( 2
η )

�
,

then Φ is a B�SE with Pr > 1− η.
M = O(�−2K log N)
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B�SE existence? Yes! 

B�SE consistency “width”:

� = O
�
( K

M log MN
K )1/2

�⇒
not as optimal but

stronger result!

                              

Let Φ ∼ NM×N (0, 1), fix 0 � η � 1 and � > 0. If

M � 4
�2

�
K log(N) + 2K log( 50

� ) + log( 2
η )

�
,

then Φ is a B�SE with Pr > 1− η.
M = O(�−2K log N)
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4. Generalized Embeddings
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Y. Plan, R. Vershynin, “Dimension reduction by random hyperplane tessellations”, 2011, arXiv:1111.4452
Y. Plan, R. Vershynin, “Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach”, IEEE TIT 2012, arXiv:1202.1212.

Let K ⊂ SN−1 (e.g., compressible signals s.t. �x�2/�x�1 �
√

K)
�= ΣK

What can we say on dH(A(x), A(s)) for x, s ∈ K?

Uniform tesselation: [Plan, Vershynin, 11]

P
�
# random hyperplanes btw x and s ∝ dang(x, s)

�

dH(A(x), A(s))
?

K
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Beyond strict sparsity ...
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Y. Plan, R. Vershynin, “Dimension reduction by random hyperplane tessellations”, 2011, arXiv:1111.4452
Y. Plan, R. Vershynin, “Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach”, IEEE TIT 2012, arXiv:1202.1212.

Examples:

Measuring the “dimension” of K → Gaussian mean width:

w(K) := E sup
u∈K−K

�g,u�, with gk ∼iid N (0, 1)

w2(SN−1) � 4N

w2(K) � Clog |K| (for finite sets)

w2(K) � L if subspace with dimK = L

w2(ΣK) � K log(2N/K)

K

η

width in direction η
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Beyond strict sparsity ...
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Y. Plan, R. Vershynin, “Dimension reduction by random hyperplane tessellations”, 2011, arXiv:1111.4452
Y. Plan, R. Vershynin, “Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach”, IEEE TIT 2012, arXiv:1202.1212.

Proposition Let Φ ∼ NM×N (0, 1) and K ⊂ RN . Then, for some C, c > 0, if

M � C�−6w2(K),

then, with Pr � 1− e−c�2M , we have

dang(x, s)− � � dH(A(x), A(s)) � dang(x, s)− �, ∀x, s ∈ K.

not as optimal but
stronger result!

Generalize B!SE to more general sets.
In particular, to  

CK = {u ∈ RN : �u�2/�u�1 �
√

K} ⊃ ΣK

with w2(CK) � cK log N/K.

⇒ Extension to “1-bit Matrix Completion” possible!
i.e., w2(r-rank N1 ×N2 matrix) � c r(N1 + N2)!
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5. 1-bit CS Reconstructions?
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Dumbest 1-bit reconstruction

‣ Implication? 

Y. Plan, R. Vershynin, “Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach”, IEEE TIT 2012, arXiv:1202.1212.
LJ, K. Degraux, C. De Vleeschouwer, “Quantized Iterative Hard Thresholding: Bridging 1-bit and High-Resolution Quantized Compressed Sensing", SAMPTA2013

Let x ∈ ΣK ∩ SN−1 and q = sign(Φx).
Compute

x̂ = π
2M HK(Φ∗q)

Then, if previous property holds,

�x− x̂� ≤ 2�.

[LJ, Degraux, De Vleeschouwer, 13]

Non-uniform case (x given):

⇒ � = O
�
(K
M log MN

K )1/2
�

Uniform case:

⇒ � = O
�
(K
M log MN

K )1/6
�

|
√
π/2
M �sign (Φx),Φs� − �x, s�| ≤ � [Plan, Vershynin, 12]

If M = O(�−2K logN/K) (for x ∈ ΣK fixed, ∀ s ∈ ΣK)

or, if M = O(�−6K logN/K) (∀x, s ∈ ΣK), then, w.h.p,

Fact:
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‣ Let 
‣ Initially: [Boufounos, Baraniuk 2008] 

Initial approach

ϕ1

ϕ2

ϕ3

x

ϕ4

ϕ5

Non-convex! 2 numerical choices :
1. relax + projection on S N-1

2. “trust region methods” 
→ Restricted-Step Shrinkage (RSS)

x̂ = arg min
u

�u�1 s.t. diag(q)Φu > 0 and �u�2 = 1

q = sign (Φx) =: A(x)

{u ∈ RN ∩ SN−1 : q = A(u)}
⇔ {u ∈ RN ∩ SN−1 : diag(q)Φu > 0}
� x

Consistency constraint:

124



ELEN

‣ Let 
‣ Initially: [Boufounos, Baraniuk 2008] 

(relaxed) x̂ = arg min
u

�u�1 + λ�(diag(q)Φu)−�2 s.t. �u�2 = 1

→ Solved by projected gradient descent

M
SE

 (d
B)

M0 1000 2000

0

-10

-20

3000

Classical CS

1-bit CS

K=16

gain brought
by (almost)
consistency 

Can we do better?

x̂ = arg min
u

�u�1 s.t. diag(q)Φu > 0 and �u�2 = 1

q = sign (Φx) =: A(x)

Initial approach

(e.g., take 
the 1st choice)
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Other methods:
‣ Matching Sign Pursuit [Boufounos]

‣ Restricted-Step Shrinkage (RSS) [Laska, We, Yin, Baraniuk]

‣ Binary Iterative Hard Thresholding [Jacques, Laska, Boufounos, Baraniuk]

‣ Convex Optimization [Plan, Vershynin]

‣ ... 
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‣ Iterative greedy algorithm, similar to CoSaMP [Needell, Tropp, 08]
‣ Maintains running signal estimate and its support T.
‣ MSP iteration:
‣ Identify sign violations
‣ Compute proxy  
‣ Identify support  
‣ Consistent Reconstruction over support estimate: 

‣ Truncate, normalize, and update estimate:

→
→
→

r = (diag(y)Φ�x)−
p = ΦT r

Ω = suppp|2K ∪ T

b|Ω = arg min
u∈RN

�(diag(y)Φu)−�2
2 s.t �u�2 = 1 and u|T c = 0

�x ← b|K / �b|K�2

Matching Sign Pursuit (MSP)
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Matching Sign Pursuit (MSP)

Boufounos, P. T. (2009, November). “Greedy sparse signal reconstruction from sign measurements”. 
In Signals, Systems and Computers, 2009 Conference Record of the Forty-Third Asilomar Conference on (pp. 1305-1309). IEEE.
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Given q = A(x) and K, set l = 0, x0 = 0:

al+1 = xl + τ
2Φ

T �
q −A(xl)

�
,

xl+1 = HK(al+1), l← l + 1

Stop when dH(q, A(xl+1)) = 0 or l = max. iter.

Binary Iterative Hard Thresholding

(proj. K-sparse signal set)

(“gradient” towards consistency)

minimizes

(τ > 0 controls gradient descent)

(connections with ML hinge loss, 1-bit classification)

with HK(u) = K-term hard thresholding

qk −A(xl)k = 0

qj −A(xl)j > 0q

ϕj

ϕk

xl

130

J (x�) =
M�

j=1

���sign (�ϕj ,x�) �ϕj ,x
��
�
−

��

J (x�) = �[ diag(q)(Φx�)]−�1 with (λ)− = (λ− |λ|)/2
qj �
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Binary Iterative Hard Thresholding
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‣ Testing         : 
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dang(x,x∗) � dH(A(x), A(x∗)) + �(M)

Binary Iterative Hard Thresholding
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Remark: CS vs bits/meas.
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N = 2000, K = 20
Bernoulli-Gaussian model
normalized signals

B bits/measurement
B = 1, ..., 12
M = Total Bits/B

1000 trials
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Convex Optimization   [Plan, Vershynin, 12]

x̂ = arg max
u∈RN

qT Φu s.t. u ∈ K

Let q = sign (Φx) for some signal x ∈ K ⊂ BN
2

Compute

e.g., sparse, 
compressible, 
low-rank matrix

maximize
consistency

135

Convex problem if K convex!
No ambiguous amplitude definition
(u = 0 avoided)

[Bahmani, Boufounos, Raj, 13]

S. Bahmani, P.T. Boufounos, B. Raj, “Robust 1-bit Compressive Sensing via Gradient Support Pursuit”, arxiv:1304.6626

(PV-L0 problem)

x̂ = 1
�HK(Φ∗q)� HK(Φ∗q) if K = ΣK !!

Remark:
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Proposition (assuming �x� = 1) For some C, c > 0, if M � C�−6w2(K),
then, with Pr � 1− e−c�2M , we have �x̂− x�2 �

�
π
2 �.

Convex Optimization   [Plan, Vershynin, 12]

x̂ = arg max
u∈RN

qT Φu s.t. u ∈ K

Let q = sign (Φx) for some signal x ∈ K ⊂ BN
2

Compute
−2 if x is fixed

e.g., sparse, 
compressible, 
low-rank matrix

maximize
consistency
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x̂ = arg max
u∈RN

qT Φu s.t. u ∈ K

Let q = sign (Φx) for some signal x ∈ K ⊂ BN
2

Compute

+ Robust to noise:

(under the same conditions)
�x̂− x�2 � �

�
log e/� + 11 p

�
log e/p

Convex Optimization   [Plan, Vershynin, 12]

noise powernoise (bit flip)

Let qn = diag(η) q with ηi ∈ {±1}M , and assume dH(q, qn) � p

Note: if M = O(�−2(p− 1/2)−2K log N/K)
this term disappear if ηi = ±1 are iid RVs (with P (ηi = 1) = p)

Proposition (assuming �x� = 1) For some C, c > 0, if M � C�−6w2(K),
then, with Pr � 1− e−c�2M , we have �x̂− x�2 �

�
π
2 �.
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5. Playing with thresholds 
in 1-bit CS
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Thresholds?

140

‣
Is there an interest in sensing 

‣ Two recent applications:
‣ adaptive thresholds
‣ bridging 1-bit and B -bits QCS

sign (�ϕ,x� − τ)

for some (random) ϕ and τ ∈ R?

Given x ∈ RN (e.g., sparse)

O

ϕτ

x

[Kamilov, Bourquard, Amini, Unser, 12]

[LJ, Degraux, De Vleeschouwer, 13]
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1-bit CS with adaptive thresholds

qk = sign (�ϕk,x�)

Non-adaptive 1-bit CS

ϕ1

ϕ2

O

ϕ3

x

O(K
M log NM

K )

141

(τ = 0)

Reminder
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1-bit CS with adaptive thresholds

x̂k := Rec(y1, · · · , yk,ϕ1, · · · ,ϕk, τ1, · · · , τk)
τk+1 s.t. �ϕk+1, x̂k� − τk+1 = 0

�

adapted from prev. meas.Given a decoder Rec()

x
ϕ1

O

x̂1

τ1 = 0

[Kamilov, Bourquard, Amini, Unser, 12]Adaptive 1-bit CS

143

U.S. Kamilov, A. Bourquard, A. Amini, M. Unser, 
“One-bit measurements with adaptive thresholds”. Signal Processing Letters, IEEE, 19(10), 607-610.

qk = sign (�ϕk,x� − τk)
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1-bit CS with adaptive thresholds

x̂k := Rec(y1, · · · , yk,ϕ1, · · · ,ϕk, τ1, · · · , τk)
τk+1 s.t. �ϕk+1, x̂k� − τk+1 = 0

�

adapted from prev. meas.Given a decoder Rec()

x
ϕ1

O

x̂1

τ1 = 0

τ2

ϕ2

[Kamilov, Bourquard, Amini, Unser, 12]Adaptive 1-bit CS
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U.S. Kamilov, A. Bourquard, A. Amini, M. Unser, 
“One-bit measurements with adaptive thresholds”. Signal Processing Letters, IEEE, 19(10), 607-610.

qk = sign (�ϕk,x� − τk)
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1-bit CS with adaptive thresholds

x̂k := Rec(y1, · · · , yk,ϕ1, · · · ,ϕk, τ1, · · · , τk)
τk+1 s.t. �ϕk+1, x̂k� − τk+1 = 0

�

adapted from prev. meas.Given a decoder Rec()

x
ϕ1

O

x̂1

τ1 = 0

τ2

x̂2

τ3

ϕ2
ϕ3

[Kamilov, Bourquard, Amini, Unser, 12]Adaptive 1-bit CS
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U.S. Kamilov, A. Bourquard, A. Amini, M. Unser, 
“One-bit measurements with adaptive thresholds”. Signal Processing Letters, IEEE, 19(10), 607-610.

qk = sign (�ϕk,x� − τk)
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1-bit CS with adaptive thresholds

x̂k := Rec(y1, · · · , yk,ϕ1, · · · ,ϕk, τ1, · · · , τk)
τk+1 s.t. �ϕk+1, x̂k� − τk+1 = 0

�

[Kamilov, Bourquard, Amini, Unser, 12]Adaptive 1-bit CS
adapted from prev. meas.Given a decoder Rec()

x
ϕ1

O

x̂1

τ1 = 0

τ2

x̂2

τ3

ϕ2
ϕ3

x̂3

U.S. Kamilov, A. Bourquard, A. Amini, M. Unser, 
“One-bit measurements with adaptive thresholds”. Signal Processing Letters, IEEE, 19(10), 607-610.

146

qk = sign (�ϕk,x� − τk)
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1-bit CS with adaptive thresholds

Φ
q {±1}My M

M

N

Rec() set to  
Generalized 
Approximate 
Message 
Passing

Kind of 
ΣΔ loop

System view:

τ = 0

τ = adapt.

148

U.S. Kamilov, A. Bourquard, A. Amini, M. Unser, 
“One-bit measurements with adaptive thresholds”. Signal Processing Letters, IEEE, 19(10), 607-610.
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Bridging 1-bit & B -bit CS?
‣ B-bit quantizer defined with thresholds:

‣ Can we combine multiple thresholds in 1-bit CS?

150

R
ti ti+1

λ qi

λ ∈ Ri = [ti, ti+1) ⇔ sign (λ− ti) = +1 & sign (λ− ti+1) = −1
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with wj = qj − qj−1.

Given T = {τj} and Ω = {qj} (|T | = 2B + 1 = |Ω| + 1), let’s define

J(ν, λ) =
2B�

j=2

wj

���sign (λ− τj) (ν − τj)
�
−

��,

λ

τjτj−1

(for wj = 1)

ν

τj+1

“delocalized”

BIHT �1-sided norm

Illustration:

J(ν,λ) = |
�
sign (λ− τj) (ν − τj)

�
−|

= (ν − τj)

λ ∈ [τj−1, τj), ν ∈ [τj , τj+1)

Bridging 1-bit & B -bit CS?
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with wj = qj − qj−1.

Given T = {τj} and Ω = {qj} (|T | = 2B + 1 = |Ω| + 1), let’s define

J(ν, λ) =
2B�

j=2

wj

���sign (λ− τj) (ν − τj)
�
−

��,

τjτj−1 τj+1

(ν − τj)

(for wj = 1)

λ ν

Illustration:

(ν − τj+1)

λ ∈ [τj−1, τj), ν ∈ [τj+1, τj+2)

J(ν,λ)

= (ν − τj) + (ν − τj+1)

Bridging 1-bit & B -bit CS?
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with wj = qj − qj−1.

Given T = {τj} and Ω = {qj} (|T | = 2B + 1 = |Ω| + 1), let’s define

J(ν, λ) =
2B�

j=2

wj

���sign (λ− τj) (ν − τj)
�
−

��,

τjτj−1 τj+1

(for wj = 1)

λ
(ν − τj)

(ν − τj) + (ν − τj+1)
Illustration:

Bridging 1-bit & B -bit CS?
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with wj = qj − qj−1.

Given T = {τj} and Ω = {qj} (|T | = 2B + 1 = |Ω| + 1), let’s define

J(ν, λ) =
2B�

j=2

wj

���sign (λ− τj) (ν − τj)
�
−

��,

q5

λ ∈ R5

1
2 (λ− ν)2

J(λ, ν)J(ν, λ) =
2B�

j=2

wj

���sign (λ− τj) (ν − τj)
�
−

��,

Illustration: more bins

Bridging 1-bit & B -bit CS?
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Remarks:
‣ J  is convex in ν  
‣

 
‣

156

with wj = qj − qj−1.

For u,v ∈ RM : J (u,v) :=
�M

k=1 J(uk, vk)

(quadratic energy)

Given T = {τj} and Ω = {qj} (|T | = 2B + 1 = |Ω| + 1), let’s define

J(ν, λ) =
2B�

j=2

wj

���sign (λ− τj) (ν − τj)
�
−

��,

For B = 1 (j = 2 only):

J (u,v) ∝ �(sign (v)⊙ u)−�1 → �1-sided 1-bit energy
For B � 1:

J(ν, λ)→ 1
2 (ν − λ)2 and J (u,v)→ 1

2�u− v�2

Bridging 1-bit & B -bit CS?
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‣ Let’s define an inconsistency energy:

‣ Idea: Minimize it in

‣ NP Hard but greedy solution (as for IHT):

158

ΣK (as for Iterative Hard Thresholding)

T. Blumensath, M.E. Davies, “Iterative thresholding for sparse approximations”. Journal of Fourier Analysis and Applications, 14(5-6), 629-654. (2008).

(sub) gradient

Φ∗(Φu− q)Φ∗(sign (Φu)− sign (Φx))

BIHT! IHT!Quantized IHT (QIHT)

[Blumensath, Davies, 08]

LJ, K. Degraux, C. De Vleeschouwer, “Quantized Iterative Hard Thresholding: Bridging 1-bit and High-Resolution Quantized Compressed Sensing", SAMPTA2013 

EB(u) := J (Φu, q) with q = QB [Φx] and E−B(x) = 0

minu∈RN EB(u) s.t. �u�0 � K,

x(n+1) = HK [x(n) − µ ∂ EB(x(n))] and x(0) = 0.

B = 1 B � 1
∂ EB(u) = Φ∗(QB(Φu)− q)

Bridging 1-bit & B -bit CS?

http://www.jacobs-university.de/sampta/
http://www.jacobs-university.de/sampta/
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µ = 1
M (1−

�
2K/M)

*

almost “6dB per bit” gain*:

*

*

“Dumbest algo”

Adjusted by limit case 
analysis: BIHT and IHT

Note: entropy could be computed instead of B (e.g., for further efficient coding) 

Boosting
at low b

(+ Lloyd-Max Gauss. Q.)

LJ, K. Degraux, C. De Vleeschouwer, “Quantized Iterative Hard Thresholding: Bridging 1-bit and High-Resolution Quantized Compressed Sensing", SAMPTA2013 

N = 1024, K = 16, R = BM ∈ {64, 128, · · · , 1280}, 100 trials

R R R

R: total bit budget (BM)

Bridging 1-bit & B -bit CS?

http://www.jacobs-university.de/sampta/
http://www.jacobs-university.de/sampta/
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“Dumbest algo”

Interesting 
transition at

J. N. Laska, R. G. Baraniuk, ‘Regime change: Bit-depth versus measurement-rate in compressive sensing”, Signal Processing, IEEE Transactions on, 60(7), 3496-3505. (2012)

“Regime Change?”
[Laska, Baraniuk, 12]

R0 could increase with 
input noise power. 

Quantization
Compression
Regime

Measurement
Compression
Regime

N = 1024, K = 16, R = BM ∈ {64, 128, · · · , 1280}, 100 trials

R0 � 375

R=BM

Bridging 1-bit & B -bit CS?
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Further Reading
‣ T. Blumensath, M.E. Davies, “Iterative thresholding for sparse approximations”. Journal of Fourier Analysis and 

Applications, 14(5-6), pp. 629-654, 2008

‣ P. T. Boufounos and R. G. Baraniuk, “1-Bit compressive sensing,” Proc. Conf. Inform. Science and Systems (CISS), 
Princeton, NJ, March 19-21, 2008.

‣ Boufounos, P. T. (2009, November). “Greedy sparse signal reconstruction from sign measurements”. In Conference 
Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, 2009

‣ Y. Plan, R. Vershynin, “Dimension reduction by random hyperplane tessellations”, arXiv:1111.4452, 2011.

‣ Y. Plan, R. Vershynin, “Robust 1-bit compressed sensing and sparse logistic regression: a convex programming 
approach”, IEEE Trans. Info. Theory, arXiv:1202.1212, 2012.

‣ J. N. Laska, R. G. Baraniuk, ‘Regime change: Bit-depth versus measurement-rate in compressive sensing”, IEEE 
Trans. Signal Processing, 60(7), pp. 3496-3505, 2012.

‣ U.S. Kamilov, A. Bourquard, A. Amini, M. Unser, “One-bit measurements with adaptive thresholds”. IEEE Signal 
Processing Letters, 19(10), pp. 607-610, 2012

‣ L. Jacques, J. N. Laska, P. T. Boufounos, and R. G. Baraniuk, “Robust 1-Bit Compressive Sensing via Binary 
Stable Embeddings of Sparse Vectors,” IEEE Trans. Info. Theory, 59(4), 2013.

‣ L. Jacques, K. Degraux, C. De Vleeschouwer, “Quantized Iterative Hard Thresholding: Bridging 1-bit and High-
Resolution Quantized Compressed Sensing", SAMPTA 2013, to appear.
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INFORMATION EMBEDDING



Compressive Domain Processing

Mixing and 
measurement

Low-rate 
acquisition

Reconstruction 
and Processing
Is reconstruction 

necessary?

No: operate in compressive domain 
Moreover: signal does not have to be sparse 

(as long at it has some structure)
Compressive operations: detection, estimation, filtering

Randomized projection embeds signal information.
Main benefits: Computation, Memory

Questions:
What information is embedded?
How to best embed information?

• Davenport M. A., Boufounos P. T., Wakin M. B., and Baraniuk R. G., “Signal processing with compressive measurements,” IEEE Journal 
of Selected Topics in Signal Processing, v. 4, no. 2, pp. 445-460, April, 2010.



RIP/Stable Embedding

• An information preserving projection A preserves the 
geometry of the set of sparse signals

K-dim subspaces

Restricted Isometry Property



GEOMETRY-PRESERVING EMBEDDINGS



Isometric (approximate) embeddings

f (x)

f -1(x)

Transformations that preserve distances

Original space
high-dimensional and
expensive to work with

Embedding space
lower dimension or 
easier to work with

(hopefully)

For all x,y in S :  dS(x,y) ! dV(f(x),f(y))

S V



f(x) = Ax

Johnson-Lindenstrauss embeddings

f -1(x)

Original space
Distance metric: ℓ2

P points in N 

Embedding space
Embed in M

Distance metric: ℓ2
M=O(logP) dimensions

For all x,y in S:

(1− �)�x− y�22 ≤ �f(x)− f(y)�22 ≤ (1 + �)�x− y�22

Transformations that preserve distances

S⊂ N V⊂ M

• Johnson W. and Lindenstrauss J., “Extensions of Lipschitz mappings into a Hilbert space,” Contemporary Mathematics, vol. 26, pp. 189 –
206, 1984.



Johnson-Lindenstrauss Lemma

(1− �)�x− y�22 ≤ �f(x)− f(y)�22 ≤ (1 + �)�x− y�22

Consider S⊂ N containing P points. 
We can embed S in M such that for all x,y in S:

using only                               dimensions M = O

�
log P

�2

�

Later results
 f (x) can be linear f (x)=Ax, randomized A achieves bound

(e.g., entries Gaussian, +1/-1 Bernoulli, etc.)

Bound (almost) tight:                              dimensions necessaryM = O

�
log P

�2 log 1
�

�

BUT: Quantization is necessary for transmission!
 Are J-L Embeddings still appropriate?



Locality Sensitive Hashing
Randomized signal hash f: N !  such that:

d(x,y) " r " f(x) = f(y) with high probability
d(x,y) # cr " f(x) $ f(y) with high probability

…
1 2 3 B

x y
y'

r

f(y')
f(y)f(x)

(One) LSH approach: random projection and quantization,
i.e., Quantized Johnson-Lindenstrauss

cr 

• Andoni, A. and Indyk, P.,  “Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions,” Commun. ACM, vol. 
51, no. 1, pp. 117–122, 2008.

• Datar M.,  Immorlica N., Indyk P., and Mirrokni V., “Locality-Sensitive Hashing Scheme Based on p-Stable Distributions,” Proc. 
Symposium on Computational Geometry, 2004



arccos

�
�x, y�
�x��y�

�
− � ≤ dH(f(x), f(y)) ≤ arccos

�
�x, y�
�x��y�

�
+ �

f(x) = sign(Ax)

Binary Stable Embedding  

f -1(x)

Original space
Distance metric:
angle between

K-sparse unit norm 
vectors in N 

Embedding space
Embed in {0,1}M
Distance metric 

normalized hamming 
distance

 

S⊂ N V⊂{0,1}M

M = O

�
1
�2

�
K log N + K log

1
�

��

Embedding preservers angles for all K-sparse x,y in N:

using only                                                  measurements

• Jacques L., Laska J. N., Boufounos P. T., Baraniuk R. J., "Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse 
Vectors," IEEE Trans. Info. Theory, v. 59, no. 4, April, 2013.



Binary Stable Embedding 

Random 
projection 
(J-L type)

sign(⋅)

Not all random projections work!
Matrices w/ i.i.d. Gaussian entries work

w/ i.i.d. Bernoulli they don’t always 

Embedding does not preserve amplitudes
Is embedding rate-efficient?

Sufficient information for sparse recovery (previous part)

S⊂ N V⊂{0,1}M

• Plan, Y. and Vershynin, R., “Dimension reduction by random hyperplane tessellations,”    preprint, arXiv:1111.4452, 2011.
• Ai, A., Lapanowski, A., Plan, Y., Vershynin, R, “One-bit compressed sensing with non-Gaussian measurements”, Linear Algebra and 

Applications, to appear.



Information in 1-bit Measurements

Newer measurements less informative.
Chance of intersection increasingly smaller

Embedding rate-inefficient!



Quantized J-L Embeddings

J-L 
embedding

Scalar 
Quantization 

1 2 3

-1-2-3

x

Q(x)

1

2

3

-1

-3

-2

-4

4 1 2 3

-1-2-3

x

Q(x)

1
-4

4
-1

Multibit Binary (1-bit)
y y

Quantization cells

Quantization points

B-bit scalar quantizer 
with dynamic range ±S

Quantization interval
%=S#2-B+1

 Binary quantizer (B=1) 
just preserves sign

S⊂ N V⊂ M

• Li M., Rane S., and Boufounos P. T., “Quantized embeddings of scale-invariant image features for mobile augmented reality,” IEEE 14th 
International Workshop on Multimedia Signal Processing (MMSP), Banff, Canada, Sept. 17-19, 2012



(1− �)�x− y�2 − 2−B+1S ≤
�Q(f(x))−Q(f(y))�2

≤ (1 + �)�x− y�2 + 2−B+1S

Johnson-Lindenstrauss With Quantization [w/ Li, Rane] 

Consider S⊂ N containing P points. 
We can embed S in M such that for all x,y in S:

using only                               dimensions

and B bits per dimension
(with appropriate normalizations/saturation levels) 

Total rate: R=BM

M = O

�
log P

�2

�



(1− �)�x− y�2 − 2−
R
M +1S ≤
�Q(f(x))−Q(f(y))�2

≤ (1 + �)�x− y�2 + 2−
R
M +1S

Quantized J-L at Fixed Rate

Given total rate: R=MB
How to assign B and M? More M or more B? 

Design tradeoff: 
Number of projections vs. bits per projection

� = O(1/
√
M)

Larger M, less J-L type distortion ϵ

2−B+1S
Larger B, less quantization distortion
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Exploring the Design Trade-off
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Fixed M=256
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IN PRACTICE



The Augmented Reality Problem

Server-side processing increasingly important
(e.g. cloud computing, augmented reality)

Compression is necessary
Goal: detection; not image transmission

Q: Should we transmit the signal?
Can we reduce the rate?



Feature Extraction

Query Signal/Image Descriptive
Features

Signal/Image DatabaseSignal/Image Database

Signal/Image-based Retrieval

?



Detection/Classification Pipeline (typical)

Feature 
Extraction

Detection/
Classification

“Golden Gate 
Bridge”

Server-side

Image transmission

Server-side
Requires 

reconstruction

Detection/Classification: Based on distance/inner product



Detection/Classification Pipeline (efficient)

Feature 
Extraction

Detection/
Classification

“Golden Gate 
Bridge”

Server-side

Features transmission

Client-side
Inexpensive

Detection/Classification: Based on distance/inner product

Goal: rate-efficient distance-preserving transmission



Server Database

ZuBuD: Zurich Buildings Database

1005 images: 201 buildings from 5 viewpoints each
804 images (4 viewpoints per building) in server

201 query images (1 viewpoint per building)

? Building ID



Success Probability

[Yeo et al.,2008]
[Min et al.,2010]

• Yeo C., Ahammad P., and Ramchandran K., “Coding of image feature descriptors for distributed rate-efficient visual correspondences,” 
International Journal of Computer Vision, vol. 94, pp. 267–281, 2011, 10.1007/s11263-011-0427-1.

• Min K., Yang L., Wright J., Wu L., Hua X.-S., and Ma Y., “Compact projection: Simple and efficient near neighbor search with practical 
memory requirements,”  IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2010.
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>33% improvement
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Information Scalability

1

2

3

?

Inference relies on clusters of signals 

Large distances not necessary to determine clusters 
and nearest neighbors

Should not spend bits encoding large distances!

But how?



UNIVERSAL QUANTIZED EMBEDDINGS



What can a bit tell us?

y

3 bit quantization
intervals

0 1

y
1st bit (MSB)

0 01 1

y
2nd bit

0 00 01 11 1

y
3rd bit (LSB)



What can a bit tell us?
Can we intelligently

isolate this information? 



Solution: Modify the quantizer

Non-monotonic quantizer: Multiple intervals quantize to same value
(Focus on 1-bit quantizer today)

Rate-Efficient Scalar Quantization

… …

0
1 2 3-1-2-3 y

Q(y)

1

1 2 3

-1-2-3
y

Q(y)

1
2
3

-4

4

… …

measurements
(w/ i.i.d. gaussian matrix)

dither
(i.i.d. uniform)

scaling/precision parameter
("m=", same for all measurements)

scalar quantizer
(non-monotonic)

qm = Q

�
�x,am�+ wm

∆m

�
, q = Q(∆−1(Ax+w))

• Boufounos P. T., "Universal Rate-Efficient Scalar Quantization," IEEE Trans. Info. Theory, v. 58, no. 3, pp. 1861-1872, March, 2012.



Measurement Behavior



Quantizer Geometry (1 bit)

Quantization cells are not continuous
Signal subspace intersects most of them



Pairs of Signals, Single Measurement

H …

0
1 2 3-1-2-3

Q(x)
1

⟨x,"⟩+w’ ⟨y,"⟩+w’l

⟨x,"⟩ ⟨y,"⟩l

⟨x,"⟩+w ⟨y,"⟩+wl

Projection
(measurement)

Projection 
with dither

Projection with 
different dither

Quantization
function



Pairs of Signals, Single Measurement

P(q=q’) : probability that a single measurement is consistent 
for a pair of signals, given their distance d

In other words:
Hamming distance of embedding is 

proportional to ℓ2 distance 
up to a point



g(d) = 1− Pc|d

Embedding Properties

f (x)

f -1(x)

Original space
Distance metric: ℓ2

P points in N 

Embedding space
Embed in {0,1}M

Hamming distance
M=O(logP) dimensions

For all x,y in S:

S⊂ N V⊂ M

as long as 

0 1
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π
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2

��2

σd/∆

M = O

�
1
�2

log P

�

g(d)− � ≤ dH (f(x), f(y)) ≤ g(d) + �

• Boufounos P. T. and Rane S., “Secure Binary Embeddings for Privacy Preserving Nearest Neighbors,” Proc. Workshop on Information 
Forensics and Security (WIFS), Foz do Iguaçu, Brazil, November 29 – December 2, 2011.



Error Behavior
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Similar trade-off as J-L 

but on g(d)=1-Pc|d

�d− �

g�(�d)
� d � �d+ �

g�(�d)
Properties (slope) controlled by choice of "

�d = g−1 (dH (f(x), f(y)))Distance estimate:

Estimate ambiguity:



Error Behavior
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Small !: large slope, less ambiguity, preserves smaller distances
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g(d)− � ≤ dH (f(x), f(y)) ≤ g(d) + �

• Boufounos P. T. and Rane S., “Efficient Coding of Signal Distances Using Universal Quantized Embeddings,” Proc. Data Compression 
Conference (DCC), Snowbird, UT, March 20-22, 2013.



IN PRACTICE
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>33% improvement
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BEYOND EMBEDDINGS



Reconstruction

• Consistent reconstruction: find a signal that quantizes to same bits, i.e.,

• Very good theoretical guarantees
– Exponential error decay with number of bits

• Reconstruction is a very hard problem
– Seems to have combinatorial complexity
– Probably NP

• Need to enable efficient reconstruction 
– Classical methods exploit bit hierarchy to make problem convex
– Should maintain theoretical guarantees

• Solution: Construct bit hierarchy; sub-problems become convex

ε = O(c−B)

• Boufounos, P.T., "Hierarchical Distributed Scalar Quantization", Proc. International Conference on Sampling Theory and Applications 
(SampTA), Singapore, May 2011



Hierarchical Measurements



Hierarchical Measurements



Hierarchical Measurements



Hierarchical Measurements



Reconstruction
Sampling
– Given uncertainty pick $ such that 

reconstruction is convex
– Take enough measurements to scale 

uncertainty by #<1
– Scale $ % #$ for next set of measurements
– Iterate until desired precision

Reconstruction
– For first set of measurements formulate convex 

reconstruction
– Solve for consistency
– Use solution to incorporate next set of 

measurements and determine consistency 
constraints

– Iterate until all measurement sets are 
incorporated



Privacy Preserving Properties

Assume we have encoding of two signals x,y, but not A and w
What does the encoding reveal about their relationship?

Mutual information decays very fast with d.

Information theoretic privacy-preserving guarantee:

When signals are far apart, 
encoding reveals nothing about their relationship!

Very useful for security applications
(e.g., privacy-preserving nearest neighbors, 

secure biometric authentication)

I(f(x); f(y)|d) ≤ 10Me−(πσd
∆ )2

• Boufounos P. T. and Rane S., “Secure Binary Embeddings for Privacy Preserving Nearest Neighbors,” Proc. Workshop on Information 
Forensics and Security (WIFS), Foz do Iguaçu, Brazil, November 29 – December 2, 2011.
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Final Thoughts/Discussion
• Quantization very important in signal processing

– Signal acquisition systems
– Information embedding/transmission
– Information hiding, security, privacy

• Not your college-level quantization
– High-dimensional geometrical problem
– Additive noise model inadequate
– Tight bounds with better models
– Consistency is important
– Saturation can be useful
– Non-linear concentration of measure occurs

• Quantization is a very active area of research
– 1-bit CS/Quantized CS
– Sigma-Delta for compressive and non-compressive systems
– Geometry of non-linear inverse problem solving
– Quantized Embeddings
– Vector Quantization (a whole other tutorial)



Still Open and Interesting (a small sampling...)
• Oversampling and Quantization

– Beyond consistency: quantization with additive noise

• Quantized CS
– Interaction between sparsity/sensing/quantization (signal/measurement model)
– 1-bit CS algorithmic convergence guarantees (e.g. BIHT, RSS, MSP)
– Consistent QCS theory for any bitdepth (1-bit to high-res)
– Optimal quantizer design for non-gaussian measurements
– Rate-distortion performance: CS for compression
– Sigma-Delta CS for 1-bit quantization
– Vector Quantization of CS measurements

• Universal Quantization and Embeddings
– General reconstruction algorithms: is reconstruction possible?
– Embedding guarantees for more general embeddings (e.g. multi-bit)
– Embedding behavior design
– Tighter connections with LSH
– Other security/privacy-preserving properties



Questions/Comments?
petros@boufounos.com                                        laurent.jacques@uclouvain.be
http://boufounos.com                    http://perso.uclouvain.be/laurent.jacques/

For more:
Repository: http://www.boufounos.com/resources-on-quantization/ 

http://dsp.rice.edu/1bitCS/
http://nuit-blanche.blogspot.com

http://nuit-blanche.blogspot.com/search/label/1bit
http://nuit-blanche.blogspot.com/search/label/QuantCS

http://www.boufounos.com/research/quantization/

Today’s Topics
1. Modern Scalar Quantization 

2. Compressive Sensing Overview  

3. Compressive Sensing and Quantization 

4. 1-bit Compressive Sensing 

5. Locality Sensitive Hashing and Universal Quantization 
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