Modern Quantization Strategies for

Compressive Sensing and Acquisition Systems

Petros Boufounos
petros@boufounos.com

Laurent Jacques
 laurent.jacques@uclouvain.be

Signal Acquisition Pipeline

- Typically linear (at least today's discussion)
- Can be designed to be invertible (e.g. Nyquist theorem, compressive sensing, signals with finite rate of innovation, etc...)
- Highly non-linear
- Not invertible \Longleftrightarrow loss of information
- Design to minimize loss

Today

Quantizer Design
Interaction with measurement system
Optimal reconstruction

Today's Topics

1. Modern Scalar Quantization
2. Compressive Sensing Overview
3. Compressive Sensing and Quantization
4. 1-bit Compressive Sensing
5. Locality Sensitive Hashing and Universal Quantization

Today's Topics

1. Modern Scalar Quantization

Compressive Sensing Overview Compressive Sensing and Quantization 1-bit Compressive Sensing Incality Sencitive Hashing and Universal Quantization

SIGNAL REPRESENTATION

Linear Measurement and Reconstruction Model

Signal: belongs in a vector space (e.g., $\mathbb{R}^{N}, \mathbb{C}^{N}$, bandlimited signals)

Quantized
Measurements

A: Basis expansion (critically sampled) or frame expansion (oversampled)
In absence of quantization: $\underbrace{\mathbf{S}=\mathbf{A}^{-1}}_{\begin{array}{c}\text { Biorthogonal } \\ \text { (dual) basis }\end{array}}$ or Dual frame

Basis Expansions

Frame Representations and Oversampling

Analysis (Measurement)

$$
\begin{aligned}
\mathbf{y} & =\mathbf{A x} \\
y_{i} & =\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle
\end{aligned}
$$

Synthesis (Reconstruction)

$$
\begin{aligned}
\widehat{\mathbf{x}} & =\mathbf{S y} \\
\widehat{\mathbf{x}} & =\sum_{i} y_{i} \mathbf{s}_{i}
\end{aligned}
$$

$\mathbf{S}=\mathbf{A}^{\dagger}$
Canonical
Dual Frame
oual rialie

$$
\tilde{N}=\boldsymbol{A}_{1,2}^{-1}
$$

$$
\mathbf{S}=\mathbf{A}^{"-1 "} \text {, i.e. } \mathbf{S A}=\mathbf{I}
$$

Examples of Frames and Frame Expansions

Matrix Operations in $\mathbb{R}^{M \times N}$

Analysis
(Measurement)

\vdots

-\mathbf{a}_{M}-\end{array}\right]\left[$$
\begin{array}{c}\mid \\
\mathbf{x} \\
\mid\end{array}
$$\right]=\left[$$
\begin{array}{c}y_{1} \\
\vdots \\
y_{M}\end{array}
$$\right] \Leftrightarrow y_{i}=\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle\)

Redundancy

$$
r=M / N
$$

Synthesis (Reconstruction)

$$
\left[\begin{array}{ccc}
\mid & & \mid \\
\mathbf{s}_{1} & \cdots & \mathbf{s}_{M} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{M}
\end{array}\right]=\left[\begin{array}{c}
\mid \\
\mathbf{x} \\
\mid
\end{array}\right] \Leftrightarrow \mathbf{x}=\sum_{i} y_{i} \mathbf{s}_{i}
$$

r-times Oversampling:
$\begin{gathered}\text { Analysis } \\ \text { (Measurement) }\end{gathered} y_{i}=\int_{-\infty}^{+\infty} x(t) \frac{1}{r T} \operatorname{sinc}\left(\frac{r}{T} t-i\right) d t \Leftrightarrow y_{i}=\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle \quad x(t) \quad \mathrm{LPF} \quad \mathrm{C} / \mathrm{D}: y_{k}$

Synthesis
(Reconstruction)

$$
x(t)=\sum_{i} y_{i} \operatorname{sinc}\left(\frac{r}{T} t-i\right) \Leftrightarrow \mathbf{x}=\sum_{i} y_{i} \mathbf{s}_{i}
$$

Frame Expansion/Oversampling: Subspace Mapping

Signal Space \mathcal{W}
Frame: $\left\{\mathbf{a}_{i}, i=1, \ldots, M \mid \mathbf{a} \in \mathcal{W}\right\}$
$\operatorname{dim}(\mathcal{W})=N$

Coefficient/Measurement Space \mathbb{R}^{M} Image is N-dimensional $\operatorname{dim}(\mathbf{A}(\mathcal{W})) \leq \operatorname{rank}(\mathbf{A}) \leq N<M$

Frames provide redundancy Mechanism: nullspace of synthesis operator.

Redundancy can be exploited for quantization robustness

SCALAR QUANTIZATION

Scalar Quantization

L level quantizer: $B \sim \log _{2}(L)$ bits per coefficient

Additive noise model: e_{i} uncorrelated, uniform in $\pm \frac{\alpha}{2}$

$$
\begin{gathered}
\sigma_{e}^{2}=\frac{\alpha^{2}}{12} \propto 2^{-B+1} \\
\\
\hdashline \alpha / 2
\end{gathered}
$$

Scalar Quantization

L level quantizer: $B \sim \log _{2}(L)$ bits per coefficient

Additive noise model: e_{i} uncorrelated, uniform in $\pm \frac{\alpha}{2}$

$$
\sigma_{e}^{2}=\frac{\alpha^{2}}{12} \propto 2^{-B+1}
$$

Scalar Quantization

L level quantizer: $B \sim \log _{2}(L)$ bits per coefficient

Additive noise model: e_{i} uncorrelated, uniform in $\pm \frac{\alpha}{2}$

$$
\begin{gathered}
\sigma_{e}^{2}=\frac{\alpha^{2}}{12} \propto 2^{-B+1} \\
\hdashline-\alpha / 2 \\
\\
\hdashline
\end{gathered}
$$

.manMMMMMmunn

Scalar Quantization

L level quantizer: $B \sim \log _{2}(L)$ bits per coefficient

Additive noise model: e_{i} uncorrelated, uniform in $\pm \frac{\alpha}{2}$

$$
\begin{gathered}
\sigma_{e}^{2}=\frac{\alpha^{2}}{12} \propto 2^{-B+1} \\
\hdashline \alpha / 2
\end{gathered}
$$

Quantization of Orthonormal Basis Expansions

$B=\log _{2} L$ bits per coefficient M expansion coefficients

$$
\Rightarrow R=M B=M \log _{2} L \text { bits used (rate) }
$$

$$
\text { Total Error } \varepsilon=O\left(c^{-R}\right)
$$

Quantization of Frame Representations

Very few quantization cells are intersected!
Oversampling provides robustness, but also introduces inefficiency

Bounds on Scalar Quantization

Quantization Error Reduction Rate:

$$
\varepsilon^{2}=\Omega\left(r^{-2}\right)
$$

Total error $\varepsilon=\Omega(1 / R)$ (vs. $\varepsilon=O\left(c^{-R}\right)$ for basis expansions)

Oversampled scalar quantization is inefficient!

- Thao N. T. and Vetterli M., "Lower bound on the mean-squared error in oversampled quantization of periodic signals using vector quantization analysis," IEEE Trans. Info. Theory, vol. 42, no. 2, pp. 469-479, Mar. 1996.
- Boufounos P. T., "Quantization and erasures in frame representations," MIT D.Sc. Thesis, Cambridge, MA, January 2006.

Bounds on Scalar Quantization

Quantization Error Reduction Rate:

$$
\varepsilon^{2}=\Omega\left(r^{-2}\right)
$$

But: Can we achieve it?
Linear reconstruction

$$
\begin{aligned}
\mathbf{q} & =Q(\mathbf{A x}) \\
\Rightarrow \widehat{\mathbf{x}} & =\mathbf{A}^{\dagger} \mathbf{q} \\
\Rightarrow \varepsilon^{2} & =\Omega\left(r^{-1}\right)
\end{aligned}
$$

Solution: "Consistent reconstruction"
Reconstruct a signal that explains quantized measurements

$$
\begin{aligned}
& \widehat{\mathbf{x}} \quad \text { s.t. } \mathbf{q}=Q(\mathbf{A} \widehat{\mathbf{x}}) \\
& \text { i.e. } q_{i}-\frac{\alpha}{2} \leq\left\langle\mathbf{a}_{i}, \widehat{\mathbf{x}}\right\rangle \leq q_{i}+\frac{\alpha}{2}
\end{aligned}
$$

- Thao N. and Vetterli M.,"Reduction of the MSE in R-times oversampled A/D conversion $\mathrm{O}(1 / \mathrm{R})$ to $\mathrm{O}\left(1 / \mathrm{R}^{\wedge} 2\right)$," IEEE Trans. Signal Processing, vol. 42, no. 1, pp. 200-203, Jan 1994.

Oversampling and Quantization

Using the additive noise model, e_{k} uncorrelated, uniform in $\pm \frac{\Delta}{2}$.

Tradeoff: Gain 1 bit for each 4 times oversampling Quantization error $\varepsilon^{2} \sim \Omega(1 / r)$

First Order Noise Shaping

First Order Noise Shaping

$$
\text { Optimal choice } c=\operatorname{sinc}\left(\frac{\pi}{r}\right)(\approx 1 \text { for } r \geq 4)
$$

Can we extend noise shaping to arbitrary frames?

Error compensation using projections

$$
\mathbf{x}=y_{1} \mathbf{s}_{1}+y_{2} \mathbf{s}_{2}+y_{3} \mathbf{s}_{3}
$$

1. Quantization

$$
\mathbf{x}=q_{1} \mathbf{s}_{1}+y_{2} \mathbf{s}_{2}+y_{3} \mathbf{s}_{3}
$$

2. Compensation using projection

$$
y_{2}^{\prime}=y_{2}-e_{1} c_{1,2}
$$

$$
\mathbf{x}=q_{1} \mathbf{s}_{1}+y_{2}^{\prime} \mathbf{s}_{2}+y_{3} \mathbf{s}_{3}-e_{1}\left(\mathbf{s}_{1}-c_{1,2} \mathbf{s}_{2}\right)
$$

Incremental error: $-e_{1}\left(\mathbf{s}_{1}-c_{1,2} \mathbf{s}_{2}\right) \Rightarrow c_{1,2}=\frac{\left\langle\mathbf{s}_{1}, \mathbf{s}_{2}\right\rangle}{\left\|\mathbf{s}_{2}\right\|^{2}}$

Compensation linear in the error. Coefficients can be pre-computed.

- Boufounos P. and Oppenheim A. V., "Quantization noise shaping on arbitrary frame expansions," EURASIP Journal on Applied Signal Processing, Special issue on Frames and Overcomplete Representations in Signal Processing, Communications, and Information Theory, vol. 2006, pp. Article ID 53 807, 12 pages, DOI:10.1155/ASP/2006/53 807, 2006.

Higher Order Projections

Projection coefficients $c_{i, i+k}$ designed to reduce or minimize

$$
\left\|\mathbf{s}_{i}-\sum_{k=1}^{p} c_{i, i+k} \mathbf{s}_{i+k}\right\|_{2}
$$

$$
\mathbf{x}=y_{1} \mathbf{s}_{1}+y_{2} \mathbf{s}_{2}+y_{3} \mathbf{s}_{3}
$$

1. Quantization:

$$
q_{i}=Q\left(y_{i}^{\prime}\right)=y_{i}^{\prime}+e_{i}
$$

2. Projection:

$$
y_{i+1}^{\prime}=y_{i+1}-c_{i, i+1} e_{i}
$$

$$
y_{i+p}^{\prime}=y_{i+p}-c_{i, i+p} e_{i}
$$

- Boufounos P. and Oppenheim A. V., "Quantization noise shaping on arbitrary frame expansions," EURASIP Journal on Applied Signal Processing, Special issue on Frames and Overcomplete Representations in Signal Processing, Communications, and Information Theory, vol. 2006, pp. Article ID 53 807, 12 pages, DOI:10.1155/ASP/2006/53 807, 2006.
- Benedetto J. J., Powell A. M., and Yilmaz O., "Sigma-Delta quantization and finite frames," IEEE Trans. Info. Theory, vol. 52, no. 5, pp. 1990-2005, May 2006.
- Deift, P., Krahmer, F. and Güntürk, C. S. (2011), "An optimal family of exponentially accurate one-bit Sigma-Delta quantization schemes." Comm. Pure Appl. Math., 64: 883-919. doi: 10.1002/cpa. 20367

System Description

1. Quantization:

$$
q_{i}=Q\left(y_{i}^{\prime}\right)=y_{i}^{\prime}+e_{i}
$$

2. Projection (Coefficient Update):

$$
\begin{gathered}
y_{i+1}^{\prime}=y_{i+1}-c_{i, i+1} e_{i} \\
\vdots \\
y_{i+p}^{\prime}=y_{i+p}-c_{i, i+p} e_{i}
\end{gathered}
$$

Achievable error decay $\varepsilon=O\left(r^{p+1}\right)$

- Benedetto J. J., Powell A. M., and Yilmaz O., "Sigma-Delta quantization and finite frames," IEEE Trans. Info. Theory, vol. 52, no. 5, pp. 1990-2005, May 2006.

Example: Simulation Results

Histogram of the Error Magnitude

- Random points on the plane, uniform inside the unit circle.
- Quantization points: (-7/8, -5/8, -3/8, -1/8, 1/8, 3/8, 5/8, 7/8)
- Optimal ordering (one of many) is: $\left(\mathbf{s}_{1}, \mathbf{s}_{4}, \mathbf{s}_{7}, \mathbf{s}_{3}, \mathbf{s}_{6}, \mathbf{s}_{2}, \mathbf{s}_{5}\right)$

Further Reading

- Thao N. and Vetterli M.,"Reduction of the MSE in R-times oversampled A/D conversion $\mathrm{O}(1 / \mathrm{R})$ to $\mathrm{O}\left(1 / \mathrm{R}^{\wedge} 2\right)$," IEEE Trans. Signal Processing, vol. 42, no. 1, pp. 200-203, Jan 1994.
- Thao N. T. and Vetterli M., "Lower bound on the mean-squared error in oversampled quantization of periodic signals using vector quantization analysis," IEEE Trans. Info. Theory, vol. 42, no. 2, pp. 469-479, Mar. 1996.
- Thao N. T., "Vector quantization analysis of $\Sigma \Delta$ modulation," IEEE Trans. Signal Processing, vol. 44, no. 4, pp. 808817, Apr. 1996.
- Goyal V. K.,Vetterli M., and Thao N. T., "Quantized overcomplete expansions in R^{N} : Analysis, synthesis, and algorithms," IEEE Trans. Info. Theory, vol. 44, no. 1, pp. 16-31, Jan. 1998.
- Boufounos P. and Oppenheim A.V., "Quantization noise shaping on arbitrary frame expansions," EURASIP Journal on Applied Signal Processing, Special issue on Frames and Overcomplete Representations in Signal Processing, Communications, and Information Theory, vol. 2006, pp. Article ID 53 807, 12 pages, DOI:10.1155/ASP/2006/53 807, 2006.
- Boufounos P. T., "Quantization and erasures in frame representations," MIT D.Sc. Thesis, Cambridge, MA, January 2006.
- Benedetto J. J., Powell A. M., and Yilmaz O., "Sigma-Delta quantization and finite frames," IEEE Trans. Info. Theory, vol. 52, no. 5, pp. 1990-2005, May 2006.
- Deift, P., Krahmer, F. and Güntürk, C. S. (2011), "An optimal family of exponentially accurate one-bit Sigma-Delta quantization schemes." Comm. Pure Appl. Math., 64: 883-919. doi: 10.1002/cpa. 20367

Today's Topics

1. Modern Scalar Quantization
2.
3.
4.
5.

Today's Topics

Modern Scalar Quantization

2. Compressive Sensing Overview

Compressive Sensing and Quantization

Locality Sensitive Hashing and Universal Quantization

- Candès, E., Romberg, J., and Tao, T., "Stable signal recovery from incomplete and inaccurate measurements," Comm. Pure and Appl. Math., vol. 59, no. 8, pp. 1207-1223, 2006.
- Donoho D. , "Compressed sensing," IEEE Trans. Info. Theory, vol. 52, no. 4, pp. 1289-1306, Sept. 2006.

Sensing Pipeline Paradigm Change

Goal: exploit mixing to simplify sensor or improve sensor specifications (e.g., sensor speed, A/D conversion rate, measured bandwidth/resolution)

- Compressive sensing has significantly improved our sensing capability
- Two fundamental Compressive Sensing research aspects
- Hardware modifications for efficient acquisition
- Signal/scene models and processing algorithms

Signal Structure: Sparsity

Measurement Model: Incoherence [candes et al]

- x is K-sparse or K-compressible
- Φ random, satisfies a restricted isometry property (RIP)
Φ has RIP of order $2 K$ with constant δ
If there exists δ s.t. for all $2 K$-sparse x :

$$
(1-\delta)\|x\|_{2}^{2} \leq\|\Phi x\|_{2}^{2} \leq(1+\delta)\|x\|_{2}^{2}
$$

- $M=\mathrm{O}(K \log N / K)$
- Φ also has small coherence $\mu \triangleq \max _{i \neq j}\left|\left\langle\phi_{i}, \phi_{j}\right\rangle\right|$

Measurement Model: Incoherence [candes et al]

$y \quad \Phi$

 x

Φ has RIP of order $2 K$ with constant δ If there exists δ s.t. for all $2 K$-sparse x :

$$
(1-\delta)\|x\|_{2}^{2} \leq\|\Phi x\|_{2}^{2} \leq(1+\delta)\|x\|_{2}^{2}
$$

RIP/Stable Embedding

- An information preserving projection A preserves the geometry of the set of sparse signals

Restricted Isometry Property

$$
(1-\delta)\|x\|_{2}^{2} \leq\|\Phi x\|_{2}^{2} \leq(1+\delta)\|x\|_{2}^{2}
$$

Reconstruction: Non-linear, Enforcing Structure

- Reconstruction using sparse approximation:
- Find sparsest \mathbf{x} such that $\mathbf{y} \approx \mathbf{A x}$

$$
\begin{aligned}
& \widehat{\mathbf{x}}=\arg \min _{\mathbf{x}}\|\mathbf{x}\|(0) \text { s.t. } \mathbf{y} \approx \mathbf{\Phi} \mathbf{x} \\
& \text { ation approach: } \\
& \text { rm: e.g., } \\
& \widehat{\mathbf{x}}=\arg \min _{\mathbf{x}}\|\mathbf{x}\|_{1}^{\downarrow} \text { s.t. } \mathbf{y} \approx \mathbf{\Phi}_{\mathbf{x}}
\end{aligned}
$$

- Greedy algorithms approach:
- Minimize $\|\mathbf{y}-\mathbf{A x}\|_{2}$ such that \mathbf{x} is sparse

$$
\widehat{\mathbf{x}}=\arg \min _{\mathbf{x}}\|\mathbf{y}-\mathbf{\Phi} \mathbf{x}\|_{2}^{2} \text { s.t. }\|\mathbf{x}\|_{0} \leq K
$$

- MP, OMP, ROMP, StOMP, CoSaMP, SP, ALPS, PYAMP (Pick Your Acronym Matching Pursuit)
- More general cost functions,
- GraSP, generalization of CoSaMP

$$
\widehat{\mathbf{x}}=\arg \min _{\mathbf{x}} f(\mathbf{x}) \text { s.t. }\|\mathbf{x}\|_{0} \leq K
$$

Why l_{1} relaxation works

$\min \|\mathbf{x}\|_{1}$ s.t. $\mathbf{y} \approx \Phi \mathbf{X}$

K-term approximation error
If Φ satisfies the RIP: $\|\widehat{\mathbf{x}}-\mathbf{x}\|_{2} \leq c_{1} \frac{\pi \mathbf{x}-\mathbf{x}_{K} \| \mathrm{D}}{\sqrt{K}}+c €$

Greedy Pursuits Core Idea

- y highly correlated with $\boldsymbol{\Phi}$ at locations where \boldsymbol{x} is high
- $\boldsymbol{\Phi}^{T} \boldsymbol{y}$ provides a good idea of these locations
- This is why low coherence is important

$$
\mu \triangleq \max _{i \neq j}\left|\left\langle\phi_{i}, \phi_{j}\right\rangle\right|
$$

- $\boldsymbol{\Phi}^{T} \boldsymbol{y}$ referred to as proxy for \boldsymbol{x}
- General Strategy:
- Identify locations
- Invert the system only on those locations

GraSP (Gradient Subspace Pursuit)

State Variables: Signal estimate, $\hat{\mathbf{x}}$ support estimate: T
Initialize estimate and support: $\hat{\mathbf{x}}=0, T=\operatorname{supp}(\hat{\mathbf{x}})$

- S. Bahmani, B. Raj, and P. T. Boufounos, "Greedy Sparsity-Constrained Optimization," Journal of Machine Learning Research, v. 14, pp. 807-841, March, 2013.

Universality

- Gaussian white noise basis is incoherent with any fixed orthonormal basis (with high probability)
- Signal sparse in frequency domain: $\Psi=\mathrm{idct}$

- Product $\Phi \Psi$ remains Gaussian white noise

Democracy

- Measurements are democratic [Davenport, Laska, Boufounos, Baraniuk]
-They are all equally important
-We can loose some arbitrarily
(i.e. an adversary can choose which ones)
-The $\widetilde{\boldsymbol{\Phi}}$ still satisfies RIP (as long as we don't drop too many)

Compressive Sensing and Oversampling

Given support of signal T

Resulting system is oversampled: $\mathbf{A} \in \mathbb{R}^{M \times K}$

$$
\begin{aligned}
M & =O(K \log N) \\
\Rightarrow & =O(\log N)
\end{aligned}
$$

Oversampling
Rate
Oversampling provides robustness, but introduces inefficiency

- Boufounos P., Baraniuk R. G., "Quantization of Sparse Representations." Rice University ECE Department Technical Report 0701. Summary appears in Proc. of the Data Compression Conference (DCC '07), March 27-29 2007, Snowbird, UT.

Further Reading

- Candès, E., Romberg, J., and Tao, T., "Stable signal recovery from incomplete and inaccurate measurements," Comm. Pure and Appl. Math., vol. 59, no. 8, pp. 1207-1223, 2006.
- Donoho D. , "Compressed sensing," IEEE Trans. Info. Theory, vol. 52, no. 4, pp. 1289-1306, Sept. 2006.
- Candès, Emmanuel J. "Compressive sampling." Proceedings oh the International Congress of Mathematicians: invited lectures, August 22-30, 2006, Madrid, Spain.
- Candes, E.J.; Wakin, M.B., "An Introduction To Compressive Sampling," IEEE Signal Processing Magazine, vol.25, no. 2, pp.21,30, March 2008
- M. A. Davenport, J. N. Laska, P. T. Boufounos, and R. G. Baraniuk, "A simple proof that random matrices are democratic," Rice University ECE Department Technical Report TREE-0906, Houston, TX, November, 2009.
- Needell D. and Tropp J.A., "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples," Applied and Computational Harmonic Analysis, vol. 26, no. 3, pp. 301-321, May 2009.
- S. Bahmani, B. Raj, and P. T. Boufounos, "Greedy Sparsity-Constrained Optimization,"Journal of Machine Learning Research, v. 14, pp. 807-841, March, 2013.

Today's Topics

1. Modern Scalar Quantization
2. Compressive Sensing Overview
3.
4.
5.

Today's Topics

1. Modern Scalar Quantization

2. Compressive Sensing Overview

3. Compressive Sensing and Quantization

1-bit Compressive Sensing
Locality Sensitive Hashing and Universal Quantization

- Candès, E., Romberg, J., and Tao, T., "Stable signal recovery from incomplete and inaccurate measurements," Comm. Pure and Appl. Math., vol. 59, no. 8, pp. 1207-1223, 2006.
- Donoho D. , "Compressed sensing," IEEE Trans. Info. Theory, vol. 52, no. 4, pp. 1289-1306, Sept. 2006.

Part III:
 When quantization meets compressed sensing

Laurent Jacques, UCL, Belgium
Petros Boufounos, MERL, USA

Outline:

1. Context
2. Former QCS methods and performance limits
3. Consistent Reconstructions
4. Sigma-Delta quantization in CS
5. To saturate or not? And how much?

1. Context

What is quantization?

- Generality:

Intuitively: "Quantization maps a continuous domain to a set of finite elements (or codebook)"

- Oldest example: rounding off $\lfloor x\rfloor,\lceil x\rceil, \ldots \quad \mathbb{R} \rightarrow \mathbb{Z}$

What is quantization? ..

Example 1: scalar quantization

- In \mathbb{R}^{M}, on each component of M-dimensional vectors:

$$
\begin{aligned}
& \Omega=\left\{q_{i} \in \mathbb{R}: 1 \leqslant i \leqslant 2^{B}\right\}, \\
& \mathcal{T}=\left\{t_{i} \in \overline{\mathbb{R}}: 1 \leqslant i \leqslant 2^{B}+1, t_{i} \leqslant t_{i+1}\right\} \quad \text { (thresholds) } \\
& \forall \lambda \in \mathbb{R}, \quad \mathcal{Q}[\lambda]=q_{i} \Leftrightarrow \lambda \in \mathcal{R}_{i} \triangleq\left[t_{i}, t_{i+1}\right), \quad \text { 1-D quantization cell } \\
& \forall u \in \mathbb{R}^{M}, \quad(\mathcal{Q}[u])_{j}=\mathcal{Q}\left[u_{j}\right]
\end{aligned}
$$

- Globally:

$$
\mathcal{Q}[\boldsymbol{z}]=\boldsymbol{q} \in \Omega^{M} \Leftrightarrow \boldsymbol{z} \in
$$

$$
M \text { - D quantization cell }
$$

$$
\begin{gathered}
\mathcal{R}_{i_{1}} \times \mathcal{R}_{i_{2}} \times \cdots \times \mathcal{R}_{i_{M}} \\
:=\mathcal{Q}^{-1}[\boldsymbol{q}]
\end{gathered}
$$

What is quantization? ..

Example 1: scalar quantization

- Regular uniform

$$
\begin{aligned}
q_{k} & =(k+1 / 2) \alpha \\
t_{k} & =k \alpha
\end{aligned}
$$

Regular non-uniform
Ω and \mathcal{T} optimized
e.g., wrt an input distribution Z
find minimum distortion, i.e.,

$$
\xrightarrow[\sim]{\mathcal{Z}} \underset{\mathcal{T}, \Omega}{\operatorname{argmin}} \mathbb{E}_{Z}\|Z-\mathcal{Q}[Z]\|^{2}
$$

- Non-regular \rightarrow Petros, Part V

What is quantization? ...

Example 2: vector quantization

(caveat: not really covered in this tutorial, ... except $\Sigma \Delta$, see later)
Quantization $=$ codebook $\boldsymbol{\Omega}+$ quantization cells $\mathcal{R}=\left\{\mathcal{R}_{i} \subset \mathbb{R}^{M}\right\}$

(non-separable quantization)

$$
\text { e.g., } \underset{\boldsymbol{\Omega}, \mathcal{R}}{\operatorname{argmin}} \mathbb{E}_{\boldsymbol{Z}}\|\boldsymbol{Z}-\mathcal{Q}[\boldsymbol{Z}]\|^{2}
$$

e.g., encoding components ordering + sign (permutation frame quantization)
(Nguyen et al, Goyal, ...)

Classical Sampling and Quantization

$\xrightarrow{\text { For reconstruction: }} \xrightarrow{q[n]}\left|\begin{array}{c}\text { Low-pass Filter } \\ \text { (linear reconstruction) }\end{array}\right| \xrightarrow{\widehat{x}(t)}$
Sampling: discretization in time
Lossless at the Nyquist rate
Quantization: discretization in amplitude
Always lossy
Need both for digital data acquisition

Compressive Sampling and Quantization

Compressed sensing theory says:
"Linearly sample a signal
at a rate function of
its intrinsic dimensionality"

Information theory and sensor designer say:
"Okay, but I need to
quantize/digitize my measurements!" (e.g., in $A D C$)

The Quantized CS Problem (QCS)

Natural questions:

- How to integrate quantization in CS?
- What do we loose?

- Are they some theoretical limitations? (related to information theory? geometry?)
- How to minimize quantization effects in the reconstruction?

QCS: a system view

With no additional noise:
e.g., basis pursuit,
greedy methods, ...

Finite codebook $\Rightarrow \hat{\boldsymbol{x}} \neq \boldsymbol{x}$
(i.e., impossibility to encode continuous domain in a finite number of elements)

QCS: a system view

With no additional noise:
e.g., basis pursuit,
greedy methods, ...

Finite codebook $\Rightarrow \hat{\boldsymbol{x}} \neq \boldsymbol{x}$

Objective: Minimize $\|\hat{\boldsymbol{x}}-\boldsymbol{x}\|$ given a certain number of:
bits, measurements, or bits/meas.

2. Former QCS methods and performance limits

Scalar quantization in CS

Turning measurements into bits \rightarrow scalar quantization

$$
\begin{gathered}
q_{i}=\mathcal{Q}\left[(\boldsymbol{\Phi} \boldsymbol{x})_{i}\right]=\mathcal{Q}\left[\left\langle\boldsymbol{\phi}_{i}, \boldsymbol{x}\right\rangle\right] \in \Omega \subset \mathbb{R} \\
\boldsymbol{q}=\mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{x}] \in \boldsymbol{\Omega}=\Omega^{M}
\end{gathered}
$$

Important points:

- Definition of $\boldsymbol{\Phi}$ independent of M (e.g., $\left.\Phi_{i j} \sim_{\text {iid }} \mathcal{N}(0,1)\right)$ \rightarrow preserves measurement dynamic!
- B bits per measurement
- Total bit budget: $R=B M$
- No further encoding (e.g., entropic)

Scalar quantization in CS ...

Former solution (Candès, Tao, ...)

- Quantization is like a noise

quantization

$$
\boldsymbol{q}=\mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{x}]=\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{n}^{\text {distortion }}
$$

Former solution (Candès, Tao, ...)

- Quantization is like a noise

$$
q=\mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{x}]=\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{n}
$$

Scalar quantization in CS

Former solution (Candès, Tao, ...)

1. For uniform quantization, by construction:

ϵ ?

$$
\begin{aligned}
n_{i} & =\mathcal{Q}\left[(\boldsymbol{\Phi} \boldsymbol{x})_{i}\right]-(\boldsymbol{\Phi} \boldsymbol{x})_{i} \\
& \in q_{k_{i}}-\mathcal{R}_{k_{i}}=[-\alpha / 2, \alpha / 2] \\
& \Rightarrow\|\boldsymbol{n}\|_{\infty} \leq \alpha / 2
\end{aligned}
$$

$$
\Rightarrow\|\boldsymbol{n}\|^{2} \leqslant M\|\boldsymbol{n}\|_{\infty}^{2} \leqslant M \alpha^{2} \cdot / \sqrt{4} ;
$$

and plug this upper bound in BPDN
can be improved!

Scalar quantization in CS

Former solution (Candès, Tao, ...)

2. For uniform quantization, uniform model!

$$
\begin{aligned}
\Rightarrow \mathbb{E}\left|n_{i}\right|^{2} & =\alpha^{2} / 12 \\
\Rightarrow\|\boldsymbol{n}\|^{2} & \leqslant \mathbb{E}\|\boldsymbol{n}\|^{2}+\kappa \sqrt{\operatorname{Var}\|\boldsymbol{n}\|^{2}} \quad \text { (Chernoff-Hoeffing, bounded RVs) } \\
& \leqslant M \frac{\alpha^{2}}{12}+\kappa \sqrt{M} \frac{\alpha^{2}}{6 \sqrt{5}}=\epsilon_{2}^{2} \simeq M \frac{\alpha^{2}}{12}
\end{aligned}
$$

and plug this upper bound in BPDN

$$
\text { with } \operatorname{Pr}>1-e^{-2 \kappa^{2}}
$$

Former solution (Candès, Tao, ...)

- Therefore, from BPDN $\ell_{2}-\ell_{1}$ instance optimality:

$$
\|\hat{\boldsymbol{x}}-\boldsymbol{x}\| \lesssim C \alpha+D e_{0}(K), \quad \text { for } C, D>0
$$

(for BPDN with ϵ_{2}, under prev. cond.)

- Assuming :
- bounded dynamics: $\|\boldsymbol{\Phi} \boldsymbol{x}\|_{\infty}=\max \left|(\boldsymbol{\Phi} \boldsymbol{x})_{i}\right| \leqslant \rho \quad$ (e.g., by discarding saturation) (see later)
- B bits per measurements $\Rightarrow \alpha \simeq \rho 2^{1-B}$

$$
\Rightarrow \mathrm{BPDN} \mathrm{RMSE} \lesssim C^{\prime} 2^{-B}+D e_{0}(K) \quad \text { for } C^{\prime}, D>0
$$

as soon as RIP holds: $M=O(K \log N / K)$

- Equivalently: BPDN RMSE $\simeq O\left(2^{-R / M}\right)+e_{0}(K)$
for a rate $R=B M$ bits (total "bid budget" for all meas.)

Scalar quantization in CS ...

RMSE Lower bound?

- Let a fixed K-sparse $\boldsymbol{x} \in \mathbb{R}^{N}$
- Oracle: you know $T=\operatorname{supp} \boldsymbol{x}$
- Noisy measurements (random noise):

Given $\boldsymbol{\Phi} \in \mathbb{R}^{M \times N}$ with $\Phi_{i j} \sim_{\text {iid }} N(0,1)$

$$
\boldsymbol{y}=\mathbf{\Phi}_{T} \boldsymbol{x}+\boldsymbol{n}, \text { with } \mathbb{E} \boldsymbol{n} \boldsymbol{n}^{T}=\sigma^{2} \mathbf{I} \mathbf{d}_{M \times M}
$$

- Assume: $\frac{1}{\sqrt{M}} \boldsymbol{\Phi}$ is $\operatorname{RIP}\left(K, \delta_{K}\right)$ and $\operatorname{RIP}\left(1, \delta_{1}\right)$
- Compute LS solution: $\begin{array}{ll} & \hat{\boldsymbol{x}}_{T}=\boldsymbol{\Phi}_{T}^{\dagger} \boldsymbol{y}=\underset{\text { pseudo-inverse }}{\left(\boldsymbol{\Phi}_{T}^{*} \boldsymbol{\Phi}_{T}\right)^{-1} \boldsymbol{\Phi}^{*} \boldsymbol{y}} \\ & \hat{\boldsymbol{x}}_{T^{c}}=0\end{array}$
(as for BPDN)
- Then: $\operatorname{MSE}=\mathbb{E}_{\boldsymbol{n}}\|\boldsymbol{x}-\hat{\boldsymbol{x}}\|^{2} \geqslant r^{-1} \sigma^{2}\left(\frac{1-\delta_{1}}{1+\delta_{K}}\right)$
$\& \mathrm{MSE} \leqslant \frac{1}{1-\delta_{K}} \sigma^{2}$ for oversampling factor $r=M / K$
, for QCS: $\Rightarrow \mathrm{RMSE}=\Omega\left(r^{-1 / 2} 2^{-B}\right) \quad \& \operatorname{RMSE}=O\left(2^{-B}\right)$

3. Consistent Reconstructions

Consistent reconstructions in CS?

- Problem in previous case: if $\hat{\boldsymbol{x}}$ solution of BPDN,
- no Quantization Consistency (QC): $\mathcal{Q}[\boldsymbol{\Phi} \hat{\boldsymbol{x}}] \neq Q[\boldsymbol{\Phi} \boldsymbol{x}]$

$$
\|\boldsymbol{\Phi} \hat{\boldsymbol{x}}-\mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{x}]\| \leqslant \epsilon_{2} \quad \nRightarrow \mathcal{Q}[\boldsymbol{\Phi} \hat{\boldsymbol{x}}]=Q[\boldsymbol{\Phi} \boldsymbol{x}]
$$

(from BPDN constraint)
\Rightarrow sensing information is fully not exploited!

- $\quad \ell_{2}$ constraint \approx Gaussian distribution (MAP - cond. log. lik.)
- But why looking for consistency ?

Proposition (Goyal, Vetterli, Thao, 98) If T is known (with $|T|=K$), the best decoder $\operatorname{Dec}()$ provides a $\hat{\boldsymbol{x}}=\operatorname{Dec}(\boldsymbol{y}, \boldsymbol{\Phi})$ such that:

$$
\operatorname{RMSE}=\left(\mathbb{E}\|\boldsymbol{x}-\hat{\boldsymbol{x}}\|^{2}\right)^{1 / 2} \gtrsim r^{-1} \alpha
$$

where \mathbb{E} is wrt a probability measure on \boldsymbol{x}_{T} in a bounded set $\mathcal{S} \subset \mathbb{R}^{K}$.
This bound is achieved, at least, for $\boldsymbol{\Phi}_{T}=\mathrm{DFT} \in \mathbb{R}^{M \times K}$, when $\operatorname{Dec}()$ is consistent.

In quest of consistency... $\quad \ell_{2} \rightarrow \ell_{\infty}$

- Modify BPDN [w. Dai, O. Milenkovic, 09]

$$
\begin{array}{ll}
\left.\underset{\boldsymbol{\boldsymbol { x }} \in \mathbb{R}^{N}}{\operatorname{argmin}}\|\boldsymbol{u}\|_{1} \text { s.t. } \mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{u}]=\boldsymbol{q}\right] \\
\text { greedy algo: } & \Leftrightarrow \boldsymbol{\Phi} \boldsymbol{u} \in \underset{\text { convex set in } \mathbb{R}^{M}}{\in \mathcal{Q}^{-1}[\boldsymbol{q}]} \\
\text { pursuit" } & \Leftrightarrow
\end{array}
$$

+ modified greedy algo:
"subspace pursuit"

$$
\Leftrightarrow\|\boldsymbol{\Phi} \boldsymbol{u}-\boldsymbol{q}\|_{\infty} \leq \alpha / 2
$$

\exists numerical methods

In quest of consistency... $\quad \ell_{2} \rightarrow \ell_{\infty}$

- Modify BPDN [w. Dai, O. Milenkovic, 09]

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\operatorname{argmin}}\|\boldsymbol{u}\|_{1} \text { s.t. } \mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{u}]=\boldsymbol{q}
$$

Simulations: $M=128, N=256, K=6,1000$ trials $\Rightarrow \lambda \simeq 20$

W. Dai, H. V. Pham, and O. Milenkovic, "Quantized Compressive Sensing", preprint, 2009

Dequantizing CS?

[LJ, Hammond, Fadili, 2009, 2011]

- Distortion model:

$$
\boldsymbol{q}=\mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{x}]=\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{n}, \quad n_{i} \sim U\left(-\frac{\alpha}{2}, \frac{\alpha}{2}\right)
$$

, Observation: $\|\boldsymbol{\Phi} \boldsymbol{x}-\boldsymbol{q}\|_{\infty} \leq \alpha / 2$

$$
\ell_{2} \rightarrow \ell_{p}(p \geq 2)
$$

- Reconstruction: Generalizing BPDN with BPDQ

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\arg \min }\|\boldsymbol{u}\|_{1} \text { s.t. }\|\boldsymbol{q}-\boldsymbol{\Phi} \boldsymbol{u}\|_{p} \leq \epsilon_{p} \quad \begin{aligned}
& \text { Towards } p=\infty \\
& \text { Related to GGD MAP }
\end{aligned}
$$

How to find it? again, uniform model:

$$
\begin{array}{cl}
n_{i}=\mathcal{Q}\left[(\boldsymbol{\Phi} \boldsymbol{x})_{i}\right]-(\boldsymbol{\Phi} \boldsymbol{x})_{i} \\
\in q_{k_{i}}-\mathcal{R}_{k_{i}}=[-\alpha / 2, \alpha / 2] \\
\sim_{\text {iid }} \operatorname{Uniform}([-\alpha / 2, \alpha / 2])
\end{array} \Rightarrow \begin{aligned}
& \text { Estimating } p^{\text {th }} \text { moment: } \\
& \epsilon_{p}(\alpha)=\frac{\alpha}{2(p+1)^{1 / p}}(M+\kappa(p+1) \sqrt{M})^{1 / p} \\
& \quad \begin{array}{l}
\text { works with } \operatorname{Pr} \geq 1-e^{-2 \kappa^{2}}
\end{array} \\
& \quad \begin{array}{l}
\text { Note: } \epsilon_{p}(\alpha) \underset{p \rightarrow \infty}{\longrightarrow} \frac{\alpha}{2}=\mathrm{QC}!
\end{array}
\end{aligned}
$$

Dequantizing CS?

[LJ, Hammond, Fadili, 2009, 2011]

- Distortion model:

$$
\boldsymbol{q}=\mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{x}]=\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{n}, \quad n_{i} \sim U\left(-\frac{\alpha}{2}, \frac{\alpha}{2}\right)
$$

- Observation: $\|\boldsymbol{\Phi} \boldsymbol{x}-\boldsymbol{q}\|_{\infty} \leq \alpha / 2$

$$
\ell_{2} \rightarrow \ell_{p}(p \geq 2)
$$

- Reconstruction: Generalizing BPDN with BPDQ

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\arg \min }\|\boldsymbol{u}\|_{1} \text { s.t. }\|\boldsymbol{q}-\boldsymbol{\Phi} \boldsymbol{u}\|_{p} \leq \epsilon_{p}
$$

Towards $p=\infty$
Related to GGD MAP

BPDQ Stability?
If $\boldsymbol{\Phi}$ is RIP_{p} of order K, i.e.,

$$
\begin{aligned}
& \exists \mu_{p}>0, \delta \in(0,1) \\
& \qquad \sqrt{1-\delta}\|\boldsymbol{v}\|_{2} \leqslant \frac{1}{\mu_{p}}\|\boldsymbol{\Phi} \boldsymbol{v}\|_{p} \leqslant \sqrt{1+\delta}\|\boldsymbol{v}\|_{2}
\end{aligned}
$$

for all K sparse signals \boldsymbol{v}.

Gain over BPDN (for $\operatorname{tight} \epsilon_{p}(\alpha, M)$)

$$
\Rightarrow\|\boldsymbol{x}-\hat{\boldsymbol{x}}\|=O\left(\epsilon_{p} / \mu_{p}\right)
$$

$$
\Rightarrow\|\boldsymbol{x}-\hat{\boldsymbol{x}}\|=O(\alpha / \sqrt{p+1})
$$

But no free lunch: for $\boldsymbol{\Phi}$ Gaussian

$$
M=O\left((K \log N / K)^{\underline{p / 2}}\right)
$$

\Rightarrow Another reading: limited range of valid p for a given $M($ and $K)$!

Dequantizing CS?

[LJ, Hammond, Fadili, 2009, 2011]

* $N=1024, K=16$, Gaussian $\boldsymbol{\Phi}$
* $500 K$-sparse (canonical basis)
* Non-zero components follow $\mathcal{N}(0,1)$
* Quantiz. bin width $\alpha=\|\boldsymbol{\Phi} \boldsymbol{x}\|_{\infty} / 40$

Histograms of

$$
\alpha^{-1}(\boldsymbol{q}-\boldsymbol{\Phi} \hat{\boldsymbol{x}})_{i}
$$

LJ, D. Hammond, J. Fadili "Dequantizing compressed sensing: When oversampling and non-gaussian constraints combine." Information Theory, IEEE Transactions on, 57(1), 559-571.

Dequantizing CS?

[LJ, Hammond, Fadili, 2009, 2011]
A bit outside the theory...

* Synthetic Angiogram [Michael Lustig 07, SPArcol,
* $\boldsymbol{\Phi}$: Random Fourier Ensemble
* $N / M=8$
* Decoder: $\Delta_{T V, p}\left(y, \epsilon_{p}\right)$
* Quantiz. bin width $=50$ (i.e. 12 bins)

LJ, D. Hammond, J. Fadili "Dequantizing compressed sensing: When oversampling and non-gaussian constraints combine." Information Theory, IEEE Transactions on, 57(1), 559-571.

Non-uniform dequantization?

Possible!

1. Use compander formalism:

Under High Resolution Assumption (HRA)
$=$ high B

3. Reweight the bins: $\|\cdot\|_{p} \rightarrow\|\operatorname{diag}(\boldsymbol{w}) \cdot\|_{p}=:\|\cdot\|_{p, \boldsymbol{w}}$ with: $w_{i}(p):=\mathcal{G}^{\prime}\left(\left(q_{p}\right)_{i}\right)^{(p-2) / p}$
\rightarrow kind of noise stabilization operation ("equi- p-distortion")
4. Solve:

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\arg \min }\|\boldsymbol{u}\|_{1} \text { s.t. }\|\boldsymbol{q}-\boldsymbol{\Phi} \boldsymbol{u}\|_{p, \boldsymbol{w}} \leq \epsilon_{p}
$$

LJ, D. Hammond, J. Fadili, "Stabilizing Nonuniformly Quantized Compressed Sensing with Scalar Companders", arXiv:1206.6003 (2012).

Non-uniform dequantization?

Stability? Well ... need a more general RIP

$$
\operatorname{RIP}\left(\ell_{p, \boldsymbol{w}}, \ell_{2} \mid K, \delta, \mu\right) \quad \begin{aligned}
& \exists \mu>0, \delta \in(0,1) \\
& \sqrt{1-\delta}\|\boldsymbol{v}\|_{2} \leqslant \frac{1}{\mu}\|\boldsymbol{\Phi} \boldsymbol{v}\|_{p, \boldsymbol{w}} \leqslant \sqrt{1+\delta}\|\boldsymbol{v}\|_{2} \\
& \text { for all } K \text { sparse signals } \boldsymbol{v} .
\end{aligned}
$$

$$
\Rightarrow M=O\left((\theta(\boldsymbol{w}) K \log N / K)^{p / 2}\right)
$$

$$
\text { with: } \theta(\boldsymbol{w}) \simeq M^{2 / p}\|\boldsymbol{w}\|_{\infty}^{2} /\|\boldsymbol{w}\|_{p}^{2}\left(=1 \text { if } w_{i}=\mathrm{cst}\right)
$$

Then,
Given $\mathcal{Q}_{p}[\cdot], \boldsymbol{w}(p) \in \mathbb{R}_{+}^{M}$ and ϵ_{p} as before, GBPDN robustness provides:

$$
\left\|\boldsymbol{x}^{*}-\boldsymbol{x}\right\| \underset{B, M}{\lesssim} 4 c^{\prime} \frac{2^{-B}}{\sqrt{p+1}}+2 e_{0}(K)
$$

with $c^{\prime}=(9 / 8)(e \pi / 3)^{1 / 2}<1.8981$.

4. Sigma-Delta quantization in CS

Context:

- Former attempts: (see prev. slides)
$\mathrm{CS}+$ uniform scalar quantization (or pulse code modulation - PCM)
For K-sparse signals: $\left\|\mathcal{Q}_{\alpha}[\boldsymbol{\Phi} \boldsymbol{x}]-\boldsymbol{\Phi} \boldsymbol{x}\right\|_{2} \leqslant c \sqrt{M} \alpha \Rightarrow\left\|\boldsymbol{x}^{*}-\boldsymbol{x}\right\| \leqslant C \alpha$ (with RIP) and for high $\lambda,\left\|\mathcal{Q}_{\alpha}[\boldsymbol{\Phi} \boldsymbol{x}]-\boldsymbol{\Phi} \boldsymbol{x}\right\|_{p} \leqslant c M^{1 / p} \alpha \Rightarrow\left\|\boldsymbol{x}^{*}-\boldsymbol{x}\right\| \leqslant C \alpha / \sqrt{p+1}$
- No improvement if M increases!
, Can we do better?

$$
\text { Can we have }\left\|\boldsymbol{x}^{*}-\boldsymbol{x}\right\| \leqslant O\left(r^{-s} \alpha\right) \text { for some } s>0 \text { ? }
$$

- Staying with PCM, $s \leqslant 1$ (Goyal-Vetterli-Thao lower bound)
- Solution: replacing PCM by $\Sigma \Delta$ quantization! [S. Güntürk, A. Powell, R. Saab, Ö. Yılmaz]

$\Sigma \Delta$ quantization (reminder)

- PCM: Signal sensing + unif. quantization $(\operatorname{step} \alpha)$

$$
\begin{aligned}
& \boldsymbol{x} \in \mathbb{R}^{K} \quad \boldsymbol{\rightarrow} \boldsymbol{y}=\boldsymbol{A} \boldsymbol{x} \in \mathbb{R}^{M} \\
& \boldsymbol{q}=\mathcal{Q}_{\mathrm{PCM}}[\boldsymbol{y}] \text { with }
\end{aligned}
$$

$$
q_{k}=\mathcal{Q}_{\mathrm{PCM}}\left[y_{k}\right]:=\underset{u \in \alpha \mathbb{Z}}{\operatorname{argmin}}\left|y_{k}-u\right|, \quad 1 \leqslant k \leqslant M
$$

Let $\boldsymbol{A}^{\#}$, a left inverse of \boldsymbol{A}, i.e., $\boldsymbol{A}^{\#} \boldsymbol{A}=\mathbf{I d}$.

$$
\hat{\boldsymbol{x}}:=\boldsymbol{A}^{\#} \boldsymbol{q} \Rightarrow\|\boldsymbol{x}-\hat{\boldsymbol{x}}\|=\| \boldsymbol{A}_{\underset{\text { quant. noise }}{\#}(\boldsymbol{q}-\boldsymbol{q})}
$$

Taking (Moore-Penrose) pseudo-inverse: $\boldsymbol{A}^{\#}=\boldsymbol{A}^{\dagger}=\left(\boldsymbol{A}^{*} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{*}$ (or canonical dual of the frame \boldsymbol{A}) minimize $\left\|\boldsymbol{A}^{\#}(\boldsymbol{y}-\boldsymbol{q})\right\|!$ (least square solution)

- In CS, this could be used if signal support was known (see before)

$\Sigma \Delta$ quantization (reminder)

- $\Sigma \Delta \equiv$ noise shaping! Enjoy of:
- freedom to pick $\boldsymbol{q} \in \alpha \mathbb{Z}^{M}$
- freedom to take another left inverse $\boldsymbol{A}^{\#}$
- $1^{\text {st }}$ order $\Sigma \Delta$: (in 1-D) Quantizing the sequence $\left\{y_{j}: j \geqslant 0\right\}$ Use of state variables $\left\{\rho_{j}\right\}$ (1-step memory):

$$
\begin{array}{ll}
\text { find } q_{j}: & q_{j}=\mathcal{Q}_{\Sigma \Delta}^{(1)}\left[y_{j}\right]:=\operatorname{argmin}_{u \in \alpha \mathbb{Z}}\left|\rho_{j-1}+y_{j}-u\right| \\
\text { find } \rho_{j}: & (\Delta \rho)_{j}=\rho_{j}-\rho_{j-1}=y_{j}-q_{j} \quad \text { (difference eq.) }
\end{array}
$$

$\xrightarrow{y_{j}+} \oplus \xrightarrow{y_{j}+\rho_{j-1}} \mathcal{Q} \xrightarrow{q_{j}}$ with: $\left|\rho_{j}\right| \leqslant \alpha$ $\left|y_{j}-q_{j}\right| \leqslant 2 \alpha$
bigger than α but still $O(\alpha)$

$\Sigma \Delta$ quantization (reminder)

- $\Sigma \Delta \equiv$ noise shaping! Enjoy of:
- freedom to pick $\boldsymbol{q} \in \alpha \mathbb{Z}^{M}$
- freedom to take another left inverse $\boldsymbol{A}^{\#}$
$s^{\text {th }}$ order $\Sigma \Delta$: (in 1-D) Quantizing the sequence $\left\{y_{j}: j \geqslant 0\right\}$ Use of state variables $\left\{\rho_{j}\right\}$ (s-step memory):

Remark:
PCM is
$0^{\text {th }}$ order $\Sigma \Delta$
find $q_{j}: \quad q_{j}=\mathcal{Q}_{\Sigma \Sigma \Delta}^{(s)}\left[y_{j}\right]:=\operatorname{argmin}_{u \in \boldsymbol{Z}}\left|\sum_{i=1}^{s}(-1)^{i-1}\binom{s}{i} \rho_{j-n}+y_{j}-u\right|$ find $\rho_{j}: \quad\left(\Delta^{s} \rho\right)_{j}=y_{j}-q_{j} \quad\left(s^{\text {th }}\right.$ order difference eq.)

with: $\quad\left|\rho_{j}\right| \leqslant \alpha$
$\left|y_{j}-q_{j}\right| \leqslant 2^{s-1} \alpha$
bigger than α but still $O(\alpha)$

$\Sigma \Delta$ quantization (reminder)

- $\Sigma \Delta \equiv$ noise shaping! Enjoy of:
- freedom to pick $\boldsymbol{q} \in \alpha \mathbb{Z}^{M}$
- freedom to take another left inverse $\boldsymbol{A}^{\#}$ $s^{\text {th }}$ order $\Sigma \Delta$:

Most important fact: $\left(\Delta^{s} \rho\right)_{j}=y_{j}-q_{j} \Leftrightarrow \boldsymbol{D}^{s} \boldsymbol{\rho}=\boldsymbol{y}-\boldsymbol{q}$

$$
\begin{gathered}
\hat{\boldsymbol{x}}:=\boldsymbol{A}^{\#} \boldsymbol{q} \Rightarrow\|\boldsymbol{x}-\hat{\boldsymbol{x}}\|=\left\|\boldsymbol{A}^{\#} \boldsymbol{D}^{s}(\boldsymbol{y}-\boldsymbol{q})\right\| \\
\quad \text { minimize }\left\|\boldsymbol{A}^{\#} \boldsymbol{D}^{s}(\boldsymbol{y}-\boldsymbol{q})\right\|!
\end{gathered}
$$

[^0]Sobolev duals

$$
\boldsymbol{A}_{\mathrm{sob}, s}=\left(\boldsymbol{D}^{-s} \boldsymbol{A}\right)^{\dagger} \boldsymbol{D}^{-s}
$$

$\Sigma \Delta$ quantization (reminder)

- $\Sigma \Delta \equiv$ noise shaping! Enjoy of:
- freedom to pick $\boldsymbol{q} \in \alpha \mathbb{Z}^{M}$
- freedom to take another left inverse $\boldsymbol{A}^{\#}$
- $s^{\text {th }}$ order $\Sigma \Delta$:

Most important fact: $\left(\Delta^{s} \rho\right)_{j}=y_{j}-q_{j} \Leftrightarrow \boldsymbol{D}^{s} \boldsymbol{\rho}=\boldsymbol{y}-\boldsymbol{q}$

$$
\boldsymbol{x}=\boldsymbol{A}_{\text {sob,s }, ~} \boldsymbol{q} \quad \boldsymbol{A}_{\text {sob }, s}=\left(\boldsymbol{D}^{-s} \boldsymbol{A}\right)^{\dagger} \boldsymbol{D}^{-s}
$$

Proposition Let $\boldsymbol{A} \in \mathbb{R}^{M \times K}$ with $A_{i j} \sim_{\text {idd }} \mathcal{N}(0,1)$.
For any $\kappa \in(0,1)$, if $r:=M / K \geqslant c(\log M)^{1 /(1-\kappa)}$, then with $\operatorname{Pr}>1-e^{-c^{\prime} M / r^{\kappa}}$,

for some $c, c^{\prime}, C_{s}>0$.
proof: show that
$\left.\overline{\sigma_{\min }(} \boldsymbol{D}^{-s} \boldsymbol{A}\right)>C_{s}^{\prime} r^{\kappa\left(s-\frac{1}{2}\right)} \sqrt{M}$

$\Sigma \Delta$ quantization in CS

$$
\boldsymbol{x} \in \Sigma_{K} \subset \mathbb{R}^{N} \rightarrow \boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{x} \in \mathbb{R}^{M} \underset{\|\boldsymbol{y}-\boldsymbol{q}\| \leqslant 2^{s-1} \alpha \sqrt{M}}{\rightarrow \boldsymbol{Q}}=\mathcal{Q}_{\sum \Delta}^{(s)}[\boldsymbol{y}]
$$

Two-steps procedure:

1. find the support T of \boldsymbol{x} : coarse approx. with BPDN
2. compute $\hat{\boldsymbol{x}}:=\left(\boldsymbol{\Phi}_{T}\right)_{\text {sob,s }} \boldsymbol{q}=\left(\boldsymbol{D}^{-s} \boldsymbol{\Phi}_{T}\right)^{\dagger} \boldsymbol{D}^{-s} \boldsymbol{q}$

Proposition Let $\boldsymbol{\Phi} \in \mathbb{R}^{M \times K}$ with $\Phi_{i j} \sim_{\text {iid }} \mathcal{N}(0,1)$. Suppose $\kappa \in(0,1)$ and $r:=M / K \geqslant c(\log M)^{1 /(1-\kappa)}$ for $c>0$. Then, $\exists c^{\prime}, C, C_{s}>0$ such that, with $\operatorname{Pr}>1-e^{-c^{\prime} M / r^{r^{\prime}}}$, for all $\boldsymbol{x} \in \Sigma_{K}$ s.t. $\min _{i \in \operatorname{supp} \boldsymbol{x}}\left|x_{i}\right| \geqslant C \alpha$,

$$
\|\hat{\boldsymbol{x}}-\boldsymbol{x}\| \leqslant C_{s} r^{-\kappa\left(s-\frac{1}{2}\right)} \alpha .
$$

$\Sigma \Delta$ quantization in CS

$M \in\{100,200, \cdots, 1000\}, K=10$ and 1000 trials $\left(x_{i} \in\{0, \pm 1 / \sqrt{K}\},\|\boldsymbol{x}\| \simeq 1, \alpha=10^{-2}\right)$

Güntürk, C. S., Lammers, M., Powell, A. M., Saab, R., \& Yılmaz, Ö. (2013). Sobolev duals for random frames and $\boldsymbol{\Sigma} \boldsymbol{\Delta}$ quantization of compressed sensing measurements. Foundations of Computational Mathematics, 13(1), 1-36.

5. To saturate or not? And how much?

Saturation phenomenon:

Uniform quantization:

- α quantization interval
- error per measurement bounded:

$$
\left|\lambda-\mathcal{Q}_{\alpha}[\lambda]\right| \leqslant \alpha / 2
$$

Finite Dynamic Range Quantization:

- G "saturation level"
- B bit rate (bits per measurement)
- quantization interval is $\alpha=2^{-B+1} G$
- measurements above G saturate
- saturation error is unbounded

CS guarantees are for
bounded errors only!

Democracy in Action
 [Laska, Boufounos, Davenport, Baraniuk 12]

(i) Saturation Rejection:

Simply discard saturated measurements and
corresponding rows of Φ

measurements
"democratic measurements"
each measurement has roughly same amount of information
(ii) Saturation Consistency:

RIP holds on row subsets of Φ
Include saturated measurements as inequality constraint

$\widetilde{M} \times N$

Experimental Results

Note: optimal performance requires 10% saturation

J.N. Laska, P.T. Boufounos, M.A. Davenport, R.G.Baraniuk, "Democracy in action: Quantization, saturation, and compressive sensing". Applied and Computational Harmonic Analysis, 31(3), 429-443. (2011)

Experimental Results The "saturation gap"

Experimental Results The "saturation gap"

- Majority of measurements saturate • Recovery fails

Further Reading

- V. K Goyal, M. Vetterli, N. T. Thao, "Quantized Overcomplete Expansions in RN: Analysis, Synthesis, and Algorithms", IEEE Trans. Info. Theory, 44(1), 1998
- P. T. Boufounos and R. G. Baraniuk, "Quantization of sparse representations," Rice University ECE Department Technical Report 0701. Summary appears in Proc. Data Compression Conference (DCC), Snowbird, UT, March 27-29, 2007
- W. Dai, H. V. Pham, and O. Milenkovic, "Quantized Compressive Sensing", preprint, 2009
- L. Jacques, D. Hammond, J. Fadili "Dequantizing compressed sensing: When oversampling and nongaussian constraints combine." IEEE Transactions on Information Theory, 57(1), 559-571, 2011
- J.N. Laska, P.T. Boufounos, M.A. Davenport, R.G.Baraniuk, "Democracy in action: Quantization, saturation, and compressive sensing". Applied and Computational Harmonic Analysis, 31(3), 429-443, 2011
- L. Jacques, D. Hammond, J. Fadili, "Stabilizing Nonuniformly Quantized Compressed Sensing with Scalar Companders", arXiv:1206.6003, 2012
- Güntürk, C. S., Lammers, M., Powell, A. M., Saab, R., \& Yılmaz, Ö. "Sobolev duals for random frames and $\Sigma \Delta$ quantization of compressed sensing measurements". Foundations of Computational Mathematics, 13(1), 1-36, 2013

Part IV:
 Extreme quantization:
 1-bit compressed sensing

Laurent Jacques, UCL, Belgium
Petros Boufounos, MERL, USA

Outline:

1. Context
2. Theoretical performance limits
3. Stable embeddings: angles are preserved
4. Generalized Embeddings
5. 1-bit CS Reconstructions?
6. Playing with thresholds in 1-bit CS

1. Context

Central question: 1-bit sampling?

- Doable?
- For which "Sampling"?
- Which accuracy?
Reconstruction?

$$
\{ \pm 1\}^{N}
$$

Why 1-bit? Very Fast Quantizers!

[FIG1] Stated number of bits versus sampling rate.
[From "Analog-to-digital converters" B. Le, T.W. Rondeau, J.H. Reed, and C.W.Bostian, IEEE Sig. Proc. Magazine, Nov 2005]

Why 1-bit? Very Fast Quantizers!

[FIG1] Stated number of bits versus sampling rate.
[From "Analog-to-digital converters" B. Le, T.W. Rondeau, J.H. Reed, and C.W.Bostian, IEEE Sig. Proc. Magazine, Nov 2005]

1-bit Compressed Sensing

with: $\quad \operatorname{sign} t=\left\{\begin{array}{ll}1 & \text { if } t>0 \\ -1 & \text { if } t \leqslant 0\end{array} \quad\right.$ component-wise

1-bit Compressed Sensing

M-bits! But, which information inside \boldsymbol{q} ?
... mnutational
1-bit Computaressed Sensing
bits matter!

\boldsymbol{x}

M-bits! But, which information inside \boldsymbol{q} ?

nutational

 1-bit Computatiossed Sensing bits matter!

Warning 1: signal amplitude is lost!
$\boldsymbol{q}=\operatorname{sign}(\boldsymbol{\Phi}(\lambda \boldsymbol{x}))=\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{x}), \quad \forall \lambda>0$
\Rightarrow Amplitude is arbitrarily fixed
Examples : $\|\boldsymbol{x}\|=1$ or $\|\boldsymbol{\Phi} \boldsymbol{x}\|_{1}=1$

....nutational

1-bit Computatiossed Sensing bits matter!

[Plan, Vershynin, 11]
Warning 2: \exists forbidden sensing!
Let $\boldsymbol{x}_{\lambda}:=(1, \lambda, 0, \cdots, 0)^{T} \in \mathbb{R}^{N}$
and $\boldsymbol{\Phi} \in\{ \pm 1\}^{M \times N}$ (e.g., Bernoulli).
We have $\left\|\boldsymbol{x}_{0}-\boldsymbol{x}_{\lambda}\right\|=\lambda$
but $\boldsymbol{q}=\operatorname{sign}\left(\boldsymbol{\Phi} \boldsymbol{x}_{0}\right)=\operatorname{sign}\left(\boldsymbol{\Phi} \boldsymbol{x}_{\lambda}\right), \forall|\lambda|<1$
\Rightarrow No hope to distinguish them by increasing M !

2. Theoretical performance limits

Lower bound: cell intersection viewpoint

Not all quantization cells intersected!
no more than $C=2^{K}\binom{N}{K}\binom{M}{K}$
Most efficient ϵ-covering of $S^{N-1} \cap \Sigma_{K}$ with ϵ-caps

$$
\Rightarrow \epsilon=\Omega(K / M)
$$

\rightarrow Lower bound on any 1-bit reconstruction error

Reaching this bound?

Carl Friedrich Gauss:
"1-bit CS? I solved it at breakfast by randomly
slicing my orange!"
http://www.gaussfacts.com

Reaching this bound?

\boldsymbol{x} on S^{2}
M vectors:
$\left\{\boldsymbol{\varphi}_{i}: 1 \leqslant i \leqslant M\right\}$
iid Gaussian

Carl Friedrich Gauss:
"1-bit CS? I solved it at breakfast by randomly
slicing my orange!"
http://www.gaussfacts.com

Reaching this bound?

\boldsymbol{x} on S^{2}
M vectors:
$\left\{\boldsymbol{\varphi}_{i}: 1 \leqslant i \leqslant M\right\}$ iid Gaussian

Reaching this bound?

\boldsymbol{x} on S^{2}
M vectors:
$\left\{\boldsymbol{\varphi}_{i}: 1 \leqslant i \leqslant M\right\}$ iid Gaussian

1-bit Measurements

Reaching this bound?

\boldsymbol{x} on S^{2}
M vectors:
$\left\{\boldsymbol{\varphi}_{i}: 1 \leqslant i \leqslant M\right\}$ iid Gaussian

1-bit Measurements
$\left\langle\varphi_{1}, x\right\rangle>0$

Reaching this bound?

\boldsymbol{x} on S^{2}
M vectors:
$\left\{\boldsymbol{\varphi}_{i}: 1 \leqslant i \leqslant M\right\}$ iid Gaussian

1-bit Measurements

Reaching this bound?

\boldsymbol{x} on S^{2}
M vectors:
$\left\{\boldsymbol{\varphi}_{i}: 1 \leqslant i \leqslant M\right\}$ iid Gaussian

1-bit Measurements

Reaching this bound?

\boldsymbol{x} on S^{2}
M vectors:
$\left\{\boldsymbol{\varphi}_{i}: 1 \leqslant i \leqslant M\right\}$ iid Gaussian

1-bit Measurements

Reaching this bound?

\boldsymbol{x} on S^{2}
M vectors:
$\left\{\boldsymbol{\varphi}_{i}: 1 \leqslant i \leqslant M\right\}$ iid Gaussian

1-bit Measurements

Reaching this bound?

Let $A(\cdot):=\operatorname{sign}(\boldsymbol{\Phi} \cdot)$ with $\boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0,1)$.
If $M=O\left(\epsilon^{-1} K \log N\right)$, then, w.h.p, for any two unit K-sparse vectors \boldsymbol{x} and \boldsymbol{s},

$$
\begin{aligned}
A(\boldsymbol{x}) & =A(\boldsymbol{s}) \quad \Rightarrow \quad\|\boldsymbol{x}-\boldsymbol{s}\| \leq \epsilon \\
& \Leftrightarrow \epsilon=O\left(\frac{K}{M} 1 \log \frac{M \bar{N}}{K_{0}}\right)
\end{aligned}
$$

almost optimal
Note: You can even afford a small error, i.e.,
if only b bits are different between $A(\boldsymbol{x})$ and $A(\boldsymbol{s})$

$$
\Rightarrow\|\boldsymbol{x}-\boldsymbol{s}\| \leqslant \frac{K+b}{K} \epsilon
$$

3. Stable embeddings:

 angles are preserved
Starting point: Hamming/Angle Concentration

- Metrics of interest:

$$
\begin{aligned}
d_{H}(\boldsymbol{u}, \boldsymbol{v}) & =\frac{1}{M} \sum_{i}\left(u_{i} \oplus v_{i}\right) \quad \text { (norm. Hamming) } \\
d_{\text {ang }}(\boldsymbol{x}, \boldsymbol{s}) & =\frac{1}{\pi} \arccos (\langle\boldsymbol{x}, \boldsymbol{s}\rangle) \quad \text { (norm. angle) }
\end{aligned}
$$

- Known fact: if $\boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0,1) \quad$ [e.g., Goemans, Williamson 1995]

$$
\begin{aligned}
& \text { Let } \boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0,1), A(\cdot)=\operatorname{sign}(\boldsymbol{\Phi} \cdot) \in\{-1,1\}^{M} \text { and } \epsilon>0 \text {. } \\
& \text { For any } \boldsymbol{x}, \boldsymbol{s} \in S^{N-1} \text {, we have } \\
& \mathbb{P}_{\boldsymbol{\Phi}}\left[\left|d_{H}(A(\boldsymbol{x}), A(\boldsymbol{s}))-d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s})\right| \leqslant \epsilon\right] \geqslant 1-2 e^{-2 \epsilon^{2} M} .
\end{aligned}
$$

Thanks to $A($.$) , Hamming distance$ concentrates around vector angles!

Binary ϵ Stable Embedding (B $\epsilon \mathrm{SE}$)

A mapping $A: \mathbb{R}^{N} \rightarrow\{ \pm 1\}^{M}$ is a binary ϵ-stable embedding ($\mathrm{B} \epsilon \mathrm{SE}$) of order K for sparse vectors if

$$
\left|d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s})-\epsilon \leqslant d_{H}(A(\boldsymbol{x}), A(\boldsymbol{s})) \leqslant d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s})+\epsilon\right|
$$

for all $\boldsymbol{x}, \boldsymbol{s} \in S^{N-1}$ with $\boldsymbol{x} \pm \boldsymbol{s} K$-sparse.
kind of "binary restricted (quasi) isometry"

- Corollary: for any algorithm with output \boldsymbol{x}^{*} jointly K-sparse and consistent (i.e., $A\left(\boldsymbol{x}^{*}\right)=A(\boldsymbol{x})$),

$$
d_{\mathrm{ang}}\left(\boldsymbol{x}, \boldsymbol{x}^{*}\right) \leqslant 2 \epsilon!
$$

- If limited binary noise, $d_{\text {ang }}$ still bounded
- If not exactly sparse signals (but almost), $d_{\text {ang }}$ still bounded

B ϵ SE existence? Yes!

Let $\boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0,1)$, fix $0 \leqslant \eta \leqslant 1$ and $\epsilon>0$. If

$$
M \geqslant \frac{4}{\epsilon^{2}}\left(K \log (N)+2 K \log \left(\frac{50}{\epsilon}\right)+\log \left(\frac{2}{\eta}\right)\right),
$$

then $\boldsymbol{\Phi}$ is a $\mathrm{B} \epsilon \mathrm{SE}$ with $\operatorname{Pr}>1-\eta$.

$$
M=O\left(\epsilon^{-2} K \log N\right)
$$

Proof sketch:

1) Generalize

$$
\mathbb{P}_{\boldsymbol{\Phi}}\left[\left|d_{H}(A(\boldsymbol{x}), A(\boldsymbol{s}))-d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s})\right| \leqslant \epsilon\right] \geqslant 1-2 e^{-2 \epsilon^{2} M}
$$

to

$$
\mathbb{P}_{\boldsymbol{\Phi}}\left[\left|d_{H}(A(\boldsymbol{u}), A(\boldsymbol{v}))-d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s})\right| \leqslant \epsilon+\left(\frac{\pi}{2} D\right)^{1 / 2} \delta\right] \geqslant 1-2 e^{-2 \epsilon^{2} M}
$$

for $\boldsymbol{u}, \boldsymbol{v}$ in a D-dimensional neighborhood of width δ around \boldsymbol{x} and \boldsymbol{s} resp.

2) Covers the space of " K-sparse signal pairs" in \mathbb{R}^{N} by

$$
O\left(\binom{N}{K} \delta^{-2 K}\right)=O\left(\left(\frac{e N}{K \delta^{2}}\right)^{K}\right) \text { neighborhoods. }
$$

3) Apply Point 1 with union bound, and "stir until the proof thickens"

$\mathrm{B} \epsilon \mathrm{SE}$ existence? Yes!

Let $\boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0,1)$, fix $0 \leqslant \eta \leqslant 1$ and $\epsilon>0$. If

$$
M \geqslant \frac{4}{\epsilon^{2}}\left(K \log (N)+2 K \log \left(\frac{50}{\epsilon}\right)+\log \left(\frac{2}{\eta}\right)\right)
$$

then $\boldsymbol{\Phi}$ is a $\mathrm{B} \epsilon \mathrm{SE}$ with $\operatorname{Pr}>1-\eta$.

$$
M=O\left(\epsilon^{-2} K \log N\right)
$$

$$
\Rightarrow \quad \left\lvert\, \begin{aligned}
& \mathrm{B} \epsilon \mathrm{SE} \text { consistency "width": } \\
& \epsilon=O\left(\left(\frac{K}{M} \log \frac{M N N}{K}\right) \sum_{1 / 2}^{\overline{1 / 2}}\right)
\end{aligned}\right.
$$

not as optimal but stronger result!

$$
d_{H} \leftrightarrow d_{\mathrm{ang}}
$$

4. Generalized Embeddings

Beyond strict sparsity

Let $\mathcal{K} \subset S^{N-1}$ (e.g., compressible signals s.t. $\left.\|\boldsymbol{x}\|_{2} /\|\boldsymbol{x}\|_{1} \leqslant \sqrt{K}\right)$ $\neq \Sigma_{K}$

What can we say on $d_{H}(A(\boldsymbol{x}), A(\boldsymbol{s}))$ for $\boldsymbol{x}, \boldsymbol{s} \in \mathcal{K}$?
Uniform tesselation: [Plan, Vershynin, 11]
$\mathrm{P}\left(\#\right.$ random hyperplanes btw \boldsymbol{x} and $\left.\boldsymbol{s} \propto d_{\text {ang }}(\boldsymbol{x}, \boldsymbol{s})\right) ?$
$d_{H}(A(\boldsymbol{x}), A(s))$

Y. Plan, R. Vershynin, "Dimension reduction by random hyperplane tessellations", 2011, arXiv:1111.4452
Y. Plan, R. Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach", IEEE TIT 2012, arXiv:1202.1212.

Beyond strict sparsity

Measuring the "dimension" of $\mathcal{K} \rightarrow$ Gaussian mean width:

$$
w(\mathcal{K}):=\mathbb{E} \sup _{\boldsymbol{u} \in \mathcal{K}-\mathcal{K}}\langle\boldsymbol{g}, \boldsymbol{u}\rangle, \text { with } g_{k} \sim_{\text {iid }} \mathcal{N}(0,1)
$$

width in direction $\boldsymbol{\eta}$

Examples:
$w^{2}\left(\mathcal{S}^{N-1}\right) \leqslant 4 N$
$w^{2}(\mathcal{K}) \leqslant C \log |\mathcal{K}| \quad$ (for finite sets)
$w^{2}(\mathcal{K}) \leqslant L \quad$ if subspace with $\operatorname{dim} \mathcal{K}=L$
$w^{2}\left(\Sigma_{K}\right) \simeq K \log (2 N / K)$

Beyond strict sparsity

Proposition Let $\boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0,1)$ and $\mathcal{K} \subset \mathbb{R}^{N}$. Then, for some $C, c>0$, if

$$
M \geqslant C \epsilon^{2}-\omega^{2}(\mathcal{K}), \quad \text { not as optimal but }
$$

then, with $\operatorname{Pr} \geqslant 1-e^{-c \epsilon^{2} M}$, we have stronger result!

$$
d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s})-\epsilon \leqslant d_{H}(A(\boldsymbol{x}), A(\boldsymbol{s})) \leqslant d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s})-\epsilon, \quad \forall \boldsymbol{x}, \boldsymbol{s} \in \mathcal{K} .
$$

Generalize $\mathrm{B} \in \mathrm{SE}$ to more general sets.
In particular, to

$$
\begin{aligned}
& \mathcal{C}_{K}=\left\{\boldsymbol{u} \in \mathbb{R}^{N}:\|\boldsymbol{u}\|_{2} /\|\boldsymbol{u}\|_{1} \leqslant \sqrt{K}\right\} \supset \Sigma_{K} \\
& \text { with } w^{2}\left(\mathcal{C}_{K}\right) \leqslant c K \log N / K
\end{aligned}
$$

\Rightarrow Extension to "1-bit Matrix Completion" possible! i.e., $w^{2}\left(r\right.$-rank $N_{1} \times N_{2}$ matrix $) \leqslant c r\left(N_{1}+N_{2}\right)$!
Y. Plan, R. Vershynin, "Dimension reduction by random hyperplane tessellations", 2011, arXiv:1111.4452
Y. Plan, R. Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach", IEEE TIT 2012, arXiv:1202.1212.

5. 1-bit CS Reconstructions?

Dumbest 1-bit reconstruction

$$
\begin{aligned}
& \text { Fact: If } M=O\left(\epsilon^{-2} K \log N / K\right) \text { (for } \boldsymbol{x} \in \Sigma_{K} \text { fixed, } \forall s \in \Sigma_{K} \text {) } \\
& \text { or, if } M=O\left(\epsilon^{-6} K \log N / K\right)\left(\forall \boldsymbol{x}, \boldsymbol{s} \in \Sigma_{K}\right) \text {, then, w.h.p, } \\
& \left|\frac{\sqrt{\pi} / 2}{M}\langle\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{x}), \boldsymbol{\Phi} \boldsymbol{s}\rangle-\langle\boldsymbol{x}, \boldsymbol{s}\rangle\right| \leq \epsilon \quad \text { [Plan, Vershynin, 12] }
\end{aligned}
$$

- Implication? [LJ, Degraux, De Vleeschouwer, 13]

Let $\boldsymbol{x} \in \Sigma_{K} \cap S^{N-1}$ and $\boldsymbol{q}=\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{x})$. Compute

$$
\hat{\boldsymbol{x}=\frac{\pi}{2 M} \mathcal{H}_{K}\left(\boldsymbol{\Phi}^{*} \boldsymbol{q}\right),}
$$

Then, if previous property holds,

$$
\|\boldsymbol{x}-\hat{\boldsymbol{x}}\| \leq 2 \epsilon
$$

Non-uniform case (\boldsymbol{x} given): $\Rightarrow \epsilon=O\left(\left(\frac{K}{M} \log \frac{M N}{K}\right)^{1 / 2}\right)$
Uniform case:
$\Rightarrow \epsilon=O\left(\left(\frac{K}{M} \log \frac{M N}{K}\right)^{1 / 6}\right)$

Initial approach

, Let $\boldsymbol{q}=\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{x})=: A(\boldsymbol{x})$

- Initially: [Boufounos, Baraniuk 2008]

$$
\hat{\boldsymbol{x}}=\arg \min \|\boldsymbol{u}\|_{1} \quad \text { s.t. } \quad \operatorname{diag}(\boldsymbol{q}) \boldsymbol{\Phi} \boldsymbol{u}>0 \quad \text { and }\|\boldsymbol{u}\|_{2}=1
$$

Non-convex! 2 numerical choices :

1. relax + projection on S^{N-1}
2. "trust region methods"
\rightarrow Restricted-Step Shrinkage (RSS)

Consistency constraint:

$$
\begin{aligned}
& \left\{\boldsymbol{u} \in \mathbb{R}^{N} \cap S^{N-1}: \boldsymbol{q}=A(\boldsymbol{u})\right\} \\
& \Leftrightarrow\left\{\boldsymbol{u} \in \mathbb{R}^{N} \cap S^{N-1}: \operatorname{diag}(\boldsymbol{q}) \boldsymbol{\Phi} \boldsymbol{u}>0\right\} \\
& \ni \boldsymbol{x}
\end{aligned}
$$

Initial approach

Let $\boldsymbol{q}=\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{x})=: A(\boldsymbol{x})$

- Initially: [Boufounos, Baraniuk 2008]
(egg., take
the $1^{\text {st }}$ choice)
$\hat{\boldsymbol{x}}=\arg \min \|\boldsymbol{u}\|_{1}$ s.t. $\operatorname{diag}(\boldsymbol{q}) \boldsymbol{\Phi u > 0}$ and $\|\boldsymbol{u}\|_{2}=1$${ }^{-1}$ (relaxed) $\quad \hat{\boldsymbol{x}}=\underset{\boldsymbol{u}}{\arg \min }\|\boldsymbol{u}\|_{1}+\lambda\left\|(\operatorname{diag}(\boldsymbol{q}) \boldsymbol{\Phi} \boldsymbol{u})_{-}\right\|^{2}$ s.t. $\|\boldsymbol{u}\|_{2}=1$
\rightarrow Solved by projected gradient descent

Other methods:

V. Matching Sign Pursuit [Boufounos]
, Restricted-Step Shrinkage (RSS) [Laska, We, Yin, Baraniuk]
Binary Iterative Hard Thresholding [Jacques, Laska, Boufounos, Baraniuk] Convex Optimization [Plan, Vershynin]

Matching Sign Pursuit (MSP)

- Iterative greedy algorithm, similar to CoSaMP [Needell, Tropp, 08]
- Maintains running signal estimate and its support T.
- MSP iteration:

Identify sign violations $\rightarrow \boldsymbol{r}=(\operatorname{diag}(\boldsymbol{y}) \boldsymbol{\Phi} \widehat{\boldsymbol{x}})_{-}$
Compute proxy $\quad \rightarrow \boldsymbol{p}=\boldsymbol{\Phi}^{T} \boldsymbol{r}$
Identify support
$\rightarrow \Omega=\left.\operatorname{supp} \boldsymbol{p}\right|_{2 K} \cup T$
Consistent Reconstruction over support estimate:

$$
\left.\boldsymbol{b}\right|_{\Omega}=\arg \min _{\boldsymbol{u} \in \mathbb{R}^{N}}\left\|(\operatorname{diag}(\boldsymbol{y}) \boldsymbol{\Phi} \boldsymbol{u})_{-}\right\|_{2}^{2} \text { s.t }\|\boldsymbol{u}\|_{2}=1 \text { and }\left.\boldsymbol{u}\right|_{T^{c}}=0
$$

Truncate, normalize, and update estimate: $\left.\quad \widehat{\boldsymbol{x}} \leftarrow \boldsymbol{b}\right|_{K} /\left\|\left.\boldsymbol{b}\right|_{K}\right\|_{2}$

Matching Sign Pursuit (MSP)

(b) MSP Reconstruction Improvement

Boufounos, P. T. (2009, November). "Greedy sparse signal reconstruction from sign measurements".
In Signals, Systems and Computers, 2009 Conference Record of the Forty-Third Asilomar Conference on (pp. 1305-1309). IEEE.

Binary Iterative Hard Thresholding

Given $\boldsymbol{q}=A(\boldsymbol{x})$ and K, set $l=0, \boldsymbol{x}^{0}=0$:

("gradient" towards consistency)
($\tau>0$ controls gradient descent)
(proj. K-sparse signal set)
with $\mathcal{H}_{K}(\boldsymbol{u})=K$-term hard thresholding
Stop when $d_{H}\left(\boldsymbol{q}, A\left(\boldsymbol{x}^{l+1}\right)\right)=0$ or $l=\max$. iter.
minimizes $\mathcal{J}\left(\boldsymbol{x}^{\prime}\right)=\left\|\left[\operatorname{diag}(\boldsymbol{q})\left(\boldsymbol{\Phi} \boldsymbol{x}^{\prime}\right)\right]_{-}\right\|_{1}$ with $(\lambda)_{-}=(\lambda-|\lambda|) / 2$

$$
\begin{aligned}
\mathcal{J}\left(\boldsymbol{x}^{\prime}\right)= & \sum_{j=1}^{M} \mid(\overbrace{\operatorname{sign}\left(\left\langle\boldsymbol{\varphi}_{j}, \boldsymbol{x}\right\rangle\right.}^{q_{j}})\left\langle\boldsymbol{\varphi}_{j}, \boldsymbol{x}^{\prime}\right\rangle)_{-} \mid \\
& q_{k}-A\left(\boldsymbol{x}^{l}\right)_{k}=0 \\
& q_{j}-A\left(\boldsymbol{x}^{l}\right)_{j}>0
\end{aligned}
$$

(connections with ML hinge loss, 1-bit classification)

Binary Iterative Hard Thresholding

$N=1000, K=10$
Bernoulli-Gaussian model normalized signals 1000 trials

Matching Sign pursuit (MSP)
Restricted-Step Shrinkage (RSS)
Binary Iterative Hard Thresholding (BIHT)

Binary Iterative Hard Thresholding

, Testing $\mathrm{B} \epsilon \mathrm{SE}: d_{\mathrm{ang}}\left(\boldsymbol{x}, \boldsymbol{x}^{*}\right) \leqslant d_{H}\left(A(\boldsymbol{x}), A\left(\boldsymbol{x}^{*}\right)\right)+\epsilon(M)$

$$
M / N=0.7
$$

$$
M / N=1.5
$$

Remark: CS vs bits/meas.

$N=2000, K=20$
Bernoulli-Gaussian model normalized signals
B bits/measurement
$B=1, \ldots, 12$
$M=$ Total Bits $/ B$

1000 trials

Sonvex Optinnization [Plan, Vershynin, 12]

Let $\boldsymbol{q}=\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{x})$ for some signal $\boldsymbol{x} \in \xrightarrow{\mathcal{K} \subset B_{2}^{N}}$
e.g., sparse, compressible,
Compute $\hat{\boldsymbol{x}}=\arg \max _{\boldsymbol{u} \in \mathbb{R}^{N}} \underbrace{\boldsymbol{q}^{T} \boldsymbol{\Phi} \boldsymbol{u}}_{\substack{\text { maximize }}} \underset{\substack{\text { consistency }}}{\text { s.t. }} \boldsymbol{u} \in \mathcal{K}$ low-rank matrix

Convex problem if \mathcal{K} convex!
No ambiguous amplitude definition ($\boldsymbol{u}=0$ avoided)

Remark: (PV-L0 problem) [Bahmani, Boufounos, Raj, 13]

$$
\hat{\boldsymbol{x}}=\frac{1}{\left\|\mathcal{H}_{K}\left(\boldsymbol{\Phi}^{*} \boldsymbol{q}\right)\right\|} \mathcal{H}_{K}\left(\boldsymbol{\Phi}^{*} \boldsymbol{q}\right) \text { if } \mathcal{K}=\Sigma_{K}!!
$$

Sonvex Optinnization [Plan, Vershynin, 12]

Let $\boldsymbol{q}=\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{x})$ for some signal $\boldsymbol{x} \in \xrightarrow{\mathcal{K} \subset B_{2}^{N}}$
e.g., sparse, compressible,
Compute $\hat{\boldsymbol{x}}=\arg \max \boldsymbol{q}^{T} \boldsymbol{\Phi} \boldsymbol{u} \quad$ s.t. $\quad \boldsymbol{u} \in \mathcal{K} \quad$ low-rank matrix

Proposition (assuming $\|\boldsymbol{x}\|=1$) For some $C, c>0$, if $M \geqslant C \epsilon^{6}-6 w^{2}(\mathcal{K})$, then, with $\operatorname{Pr} \geqslant 1-e^{-c \epsilon^{2} M}$, we have $\|\hat{\boldsymbol{x}}-\boldsymbol{x}\|^{2} \leqslant \sqrt{\frac{\pi}{2}} \epsilon$.

Convex Optimization [Plan, Vershynin, 12$]$

Let $\boldsymbol{q}=\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{x})$ for some signal $\boldsymbol{x} \in \mathcal{K} \subset B_{2}^{N}$
Compute $\hat{\boldsymbol{x}}=\arg \max _{\boldsymbol{u} \in \mathbb{R}^{N}} \boldsymbol{q}^{T} \boldsymbol{\Phi} \boldsymbol{u}$ s.t. $\boldsymbol{u} \in \mathcal{K}$

Proposition (assuming $\|\boldsymbol{x}\|=1$) For some $C, c>0$, if $M \geqslant C \epsilon^{-6} w^{2}(\mathcal{K})$, then, with $\operatorname{Pr} \geqslant 1-e^{-c \epsilon^{2} M}$, we have $\|\hat{\boldsymbol{x}}-\boldsymbol{x}\|^{2} \leqslant \sqrt{\frac{\pi}{2}} \epsilon$.

+ Robust to noise: noise (bit flip)
noise power
Let $\boldsymbol{q}_{\mathrm{n}}=\operatorname{diag}(\boldsymbol{\eta}), \boldsymbol{q}$ with $\eta_{i} \in\{ \pm 1\}^{M}$, and assume $d_{H}\left(\boldsymbol{q}, \boldsymbol{q}_{\mathrm{n}}\right) \leqslant$
(under the same conditions)

$$
\|\hat{\boldsymbol{x}}-\boldsymbol{x}\|^{2} \leqslant \epsilon \sqrt{\log e / \epsilon}+11 p \sqrt{\log e / p}
$$

this term disappear if $\eta_{i}= \pm 1$ are iid RVs (with $P\left(\eta_{i}=1\right)=p$)

5. Playing with thresholds in 1-bit CS

Thresholds?

Given $\boldsymbol{x} \in \mathbb{R}^{N}$ (e.g., sparse)
Is there an interest in sensing

$$
\operatorname{sign}(\langle\boldsymbol{\varphi}, \boldsymbol{x}\rangle-\tau)
$$

for some (random) φ and $\tau \in \mathbb{R}$?
Two recent applications:

- adaptive thresholds [Kamilov, Bourquard, Amini, Unser, 12]
- bridging 1-bit and B-bits QCS [LJ, Degraux, De Vleeschouwer, 13]

1-bit CS with adaptive thresholds

 Non-adaptive 1-bit CS $(\tau=0)$

1-bit CS with adaptive thresholds

Adaptive 1-bit CS [Kamilov, Bourquard, Amini, Unser, 12]
Given a decoder $\operatorname{Rec}()$
adapted from prev. meas.

U.S. Kamilov, A. Bourquard, A. Amini, M. Unser,
"One-bit measurements with adaptive thresholds". Signal Processing Letters, IEEE, 19(10), 607-610.

1-bit CS with adaptive thresholds

Adaptive 1-bit CS [Kamilov, Bourquard, Amini, Unser, 12]
Given a decoder Rec()
adapted from prev. meas.

U.S. Kamilov, A. Bourquard, A. Amini, M. Unser,
"One-bit measurements with adaptive thresholds". Signal Processing Letters, IEEE, 19(10), 607-610.

1-bit CS with adaptive thresholds

Adaptive 1-bit CS [Kamilov, Bourquard, Amini, Unser, 12]
Given a decoder Rec()
adapted from prev. meas.

$$
\begin{aligned}
& q_{k}=\operatorname{sign}\left(\left\langle\boldsymbol{\varphi}_{k}, \boldsymbol{x}\right\rangle\right. \\
& \left\{\begin{array}{l}
\hat{\boldsymbol{x}}_{k}:=\operatorname{Rec}\left(y_{1}, \cdots, y_{k}, \boldsymbol{\varphi}_{1}, \cdots, \boldsymbol{\varphi}_{k}, \tau_{1}, \cdots, \tau_{k}\right) \\
\tau_{k+1} \text { s.t. }\left\langle\boldsymbol{\varphi}_{k+1}, \hat{\boldsymbol{x}}_{k}\right\rangle-\tau_{k+1}=0
\end{array}\right.
\end{aligned}
$$

U.S. Kamilov, A. Bourquard, A. Amini, M. Unser,
"One-bit measurements with adaptive thresholds". Signal Processing Letters, IEEE, 19(10), 607-610.

1-bit CS with adaptive thresholds

Adaptive 1-bit CS [Kamilov, Bourquard, Amini, Unser, 12]
Given a decoder Rec()
adapted from prev. meas.

U.S. Kamilov, A. Bourquard, A. Amini, M. Unser,
"One-bit measurements with adaptive thresholds". Signal Processing Letters, IEEE, 19(10), 607-610.

1-bit CS with adaptive thresholds

 System view:

Kind of
$\Sigma \Delta$ loop

U.S. Kamilov, A. Bourquard, A. Amini, M. Unser,
"One-bit measurements with adaptive thresholds". Signal Processing Letters, IEEE, 19(10), 607-610.

Bridging 1-bit \& B-bit CS?

- B-bit quantizer defined with thresholds:

$\lambda \in \mathcal{R}_{i}=\left[t_{i}, t_{i+1}\right) \Leftrightarrow \operatorname{sign}\left(\lambda-t_{i}\right)=+1 \& \operatorname{sign}\left(\lambda-t_{i+1}\right)=-1$
Can we combine multiple thresholds in 1-bit CS?

Bridging 1-bit \& B-bit CS?

Given $\mathcal{T}=\left\{\tau_{j}\right\}$ and $\Omega=\left\{q_{j}\right\}\left(|\mathcal{T}|=2^{B}+1=|\Omega|+1\right)$, let's define

$$
J(\nu, \lambda)=\sum_{j=2}^{2^{B}} w_{j}\left|\left(\operatorname{sign}\left(\lambda-\tau_{j}\right)\left(\nu-\tau_{j}\right)\right)_{-}\right|
$$

with $w_{j}=q_{j}-q_{j-1}$.
Illustration: $\lambda \in\left[\tau_{j-1}, \tau_{j}\right), \nu \in\left[\tau_{j}, \tau_{j+1}\right)$
"delocalized"

Bridging 1-bit \& B-bit CS?

Given $\mathcal{T}=\left\{\tau_{j}\right\}$ and $\Omega=\left\{q_{j}\right\}\left(|\mathcal{T}|=2^{B}+1=|\Omega|+1\right)$, let's define

$$
J(\nu, \lambda)=\sum_{j=2}^{2^{B}} w_{j}\left|\left(\operatorname{sign}\left(\lambda-\tau_{j}\right)\left(\nu-\tau_{j}\right)\right)_{-}\right|
$$

with $w_{j}=q_{j}-q_{j-1}$.
Illustration: $\lambda \in\left[\tau_{j-1}, \tau_{j}\right), \nu \in\left[\tau_{j+1}, \tau_{j+2}\right)$

Bridging 1-bit \& B-bit CS?

Given $\mathcal{T}=\left\{\tau_{j}\right\}$ and $\Omega=\left\{q_{j}\right\}\left(|\mathcal{T}|=2^{B}+1=|\Omega|+1\right)$, let's define

$$
J(\nu, \lambda)=\sum_{j=2}^{2^{B}} w_{j}\left|\left(\operatorname{sign}\left(\lambda-\tau_{j}\right)\left(\nu-\tau_{j}\right)\right)_{-}\right|
$$

with $w_{j}=q_{j}-q_{j-1}$.
Illustration:

Bridging 1-bit \& B-bit CS?

Given $\mathcal{T}=\left\{\tau_{j}\right\}$ and $\Omega=\left\{q_{j}\right\}\left(|\mathcal{T}|=2^{B}+1=|\Omega|+1\right)$, let's define

$$
J(\nu, \lambda)=\sum_{j=2}^{2^{B}} w_{j}\left|\left(\operatorname{sign}\left(\lambda-\tau_{j}\right)\left(\nu-\tau_{j}\right)\right)_{-}\right|
$$

with $w_{j}=q_{j}-q_{j-1}$.
Illustration: more bins

Bridging 1-bit \& B-bit CS?

Given $\mathcal{T}=\left\{\tau_{j}\right\}$ and $\Omega=\left\{q_{j}\right\}\left(|\mathcal{T}|=2^{B}+1=|\Omega|+1\right)$, let's define

$$
J(\nu, \lambda)=\sum_{j=2}^{2^{B}} w_{j}\left|\left(\operatorname{sign}\left(\lambda-\tau_{j}\right)\left(\nu-\tau_{j}\right)\right)_{-}\right|
$$

with $w_{j}=q_{j}-q_{j-1}$.
For $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{M}: \mathcal{J}(\boldsymbol{u}, \boldsymbol{v}):=\sum_{k=1}^{M} J\left(u_{k}, v_{k}\right)$
Remarks:

- J is convex in ν
, For $B=1$ ($j=2$ only):
$\mathcal{J}(\boldsymbol{u}, \boldsymbol{v}) \propto\left\|(\operatorname{sign}(\boldsymbol{v}) \odot \boldsymbol{u})_{-}\right\|_{1} \rightarrow \ell_{1}$-sided 1-bit energy
- For $B \gg 1$:

$$
J(\nu, \lambda) \rightarrow \frac{1}{2}(\nu-\lambda)^{2} \text { and } \mathcal{J}(\boldsymbol{u}, \boldsymbol{v}) \rightarrow \frac{1}{2}\|\boldsymbol{u}-\boldsymbol{v}\|^{2} \quad \text { (quadratic energy) }
$$

Bridging 1-bit \& B-bit CS?

- Let's define an inconsistency energy:

$$
\mathcal{E}_{B}(\boldsymbol{u}):=\mathcal{J}(\boldsymbol{\Phi} \boldsymbol{u}, \boldsymbol{q}) \text { with } \boldsymbol{q}=\mathcal{Q}_{B}[\boldsymbol{\Phi} \boldsymbol{x}] \text { and } \mathcal{E}_{-} B(\boldsymbol{x})=0
$$

- Idea: Minimize it in Σ_{K} (as for Iterative Hard Thresholding)
[Blumensath, Davies, 08]

$$
\min _{\boldsymbol{u} \in \mathbb{R}^{N}} \mathcal{E}_{B}(\boldsymbol{u}) \text { s.t. }\|\boldsymbol{u}\|_{0} \leqslant K
$$

- NP Hard but greedy solution (as for IHT):

$$
\boldsymbol{x}^{(n+1)}=\mathcal{H}_{K}\left[\boldsymbol{x}^{(n)}-\mu \underset{(\text { sub) gradient }}{\left.\partial \mathcal{E}_{B}\left(\boldsymbol{x}^{(n)}\right)\right]} \text { and } \boldsymbol{x}^{(0)}=0\right.
$$

$$
\begin{gathered}
\boldsymbol{\Phi}^{*}(\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{u})-\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{x})) \\
\text { BIHT! } \\
B=1 \\
\hline \text { Quantized IHT (QIHT) }
\end{gathered} \frac{\partial \mathcal{E}_{B}(\boldsymbol{u})=\boldsymbol{\Phi}^{*}\left(\mathcal{Q}_{B}(\boldsymbol{\Phi} \boldsymbol{u})-\boldsymbol{q}\right)}{\stackrel{>}{B \gg 1}} \boldsymbol{\Phi}^{*}(\boldsymbol{\Phi} \boldsymbol{u}-\boldsymbol{q})
$$

T. Blumensath, M.E. Davies, "Iterative thresholding for sparse approximations". Journal of Fourier Analysis and Applications, 14(5-6), 629-654. (2008).

LJ, K. Degraux, C. De Vleeschouwer, "Quantized Iterative Hard Thresholding: Bridging 1-bit and High-Resolution Quantized Compressed Sensing", SAMPTA2013

Bridging 1-bit \& B-bit CS?

$$
N=1024, K=16, R=B M \in\{64,128, \cdots, 1280\}, 100 \text { trials (+ Lloyd-Max Gauss. Q.) }
$$

R : total bit budget $(B M)$
*: almost " 6 dB per bit" gain

$\mu=\frac{1}{M}(1-\sqrt{2 K / M})$
Adjusted by limit case
analysis: BIHT and IHT

Note: entropy could be computed instead of B (e.g., for further efficient coding)

Bridging 1-bit \& B-bit CS?

$$
N=1024, K=16, R=B M \in\{64,128, \cdots, 1280\}, 100 \text { trials }
$$

J. N. Laska, R. G. Baraniuk, 'Regime change: Bit-depth versus measurement-rate in compressive sensing", Signal Processing, IEEE Transactions on, 60(7), 3496-3505. (2012)

Further Reading

- T. Blumensath, M.E. Davies, "Iterative thresholding for sparse approximations". Journal of Fourier Analysis and Applications, 14(5-6), pp. 629-654, 2008
- P. T. Boufounos and R. G. Baraniuk, "1-Bit compressive sensing," Proc. Conf. Inform. Science and Systems (CISS), Princeton, NJ, March 19-21, 2008.
- Boufounos, P. T. (2009, November). "Greedy sparse signal reconstruction from sign measurements". In Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, 2009
- Y. Plan, R. Vershynin, "Dimension reduction by random hyperplane tessellations", arXiv:1111.4452, 2011.
- Y. Plan, R. Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach", IEEE Trans. Info. Theory, arXiv:1202.1212, 2012.
- J. N. Laska, R. G. Baraniuk, 'Regime change: Bit-depth versus measurement-rate in compressive sensing", IEEE Trans. Signal Processing, 60(7), pp. 3496-3505, 2012.
- U.S. Kamilov, A. Bourquard, A. Amini, M. Unser, "One-bit measurements with adaptive thresholds". IEEE Signal Processing Letters, 19(10), pp. 607-610, 2012
- L. Jacques, J. N. Laska, P. T. Boufounos, and R. G. Baraniuk, "Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors," IEEE Trans. Info. Theory, 59(4), 2013.
- L. Jacques, K. Degraux, C. De Vleeschouwer, "Quantized Iterative Hard Thresholding: Bridging 1-bit and HighResolution Quantized Compressed Sensing", SAMPTA 2013, to appear.

Today's Topics

1. Modern Scalar Quantization
2. Compressive Sensing Overview
3. Compressive Sensing and Quantization
4. 1-bit Compressive Sensing
5.

Locality

Today's Topics

1. Modern Scalar Quantization
2. Compressive Sensing Overview Compressive Sensing and Quantization 1-bit Compressive Sensing
3. Locality Sensitive Hashing and Universal Quantization

INFORMATION EMBEDDING

Compressive Domain Processing

No: operate in compressive domain
Moreover: signal does not have to be sparse (as long at it has some structure)
Compressive operations: detection, estimation, filtering Randomized projection embeds signal information.

Main benefits: Computation, Memory

Questions:
 What information is embedded? How to best embed information?

- Davenport M. A., Boufounos P. T., Wakin M. B., and Baraniuk R. G., "Signal processing with compressive measurements," IEEE Journal of Selected Topics in Signal Processing, v. 4, no. 2, pp. 445-460, April, 2010.

RIP/Stable Embedding

- An information preserving projection A preserves the geometry of the set of sparse signals

Restricted Isometry Property

$$
(1-\delta)\|x\|_{2}^{2} \leq\|\Phi x\|_{2}^{2} \leq(1+\delta)\|x\|_{2}^{2}
$$

GEOMETRY-PRESERVING EMBEDDINGS

Isometric (approximate) embeddings

Transformations that preserve distances
For all x, y in $s: d_{s}(x, y) \approx d_{v}(f(x), f(y))$

Johnson-Lindenstrauss embeddings

Transformations that preserve distances

For all x, y in $s:$

$$
(1-\epsilon)\|x-y\|_{2}^{2} \leq\|f(x)-f(y)\|_{2}^{2} \leq(1+\epsilon)\|x-y\|_{2}^{2}
$$

- Johnson W. and Lindenstrauss J., "Extensions of Lipschitz mappings into a Hilbert space,"Contemporary Mathematics, vol. 26, pp. 189 $206,1984$.

Johnson-Lindenstrauss Lemma

Consider $S \subset \mathbb{R}^{N}$ containing P points.
We can embed s in \mathbb{R}^{M} such that for all x, y in s :
$(1-\epsilon)\|x-y\|_{2}^{2} \leq\|f(x)-f(y)\|_{2}^{2} \leq(1+\epsilon)\|x-y\|_{2}^{2}$
using only $M=O\left(\frac{\log P}{\epsilon^{2}}\right)$ dimensions
Later results
$f(x)$ can be linear $f(x)=\mathrm{A} x$, randomized A achieves bound (e.g., entries Gaussian, +1/-1 Bernoulli, etc.)

Bound (almost) tight: $M=O\left(\frac{\log P}{\epsilon^{2} \log \frac{1}{\epsilon}}\right)$ dimensions necessary
BUT: Quantization is necessary for transmission! Are J-L Embeddings still appropriate?

Locality Sensitive Hashing

Randomized signal hash $f: \mathbb{R}^{N} \rightarrow \mathbb{N}$ such that: $d(x, y) \leq r \Rightarrow f(x)=f(y)$ with high probability $d(x, y) \geq c r \Rightarrow f(x) \neq f(y)$ with high probability

(One) LSH approach: random projection and quantization, i.e., Quantized Johnson-Lindenstrauss

- Andoni, A. and Indyk, P., "Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions," Commun. ACM, vol. 51, no. 1, pp. 117-122, 2008.
- Datar M., Immorlica N., Indyk P., and Mirrokni V., "Locality-Sensitive Hashing Scheme Based on p-Stable Distributions," Proc.

Symposium on Computational Geometry, 2004

Binary Stable Embedding

Embedding preservers angles for all K-sparse x, y in \mathbb{R}^{N} :
$\arccos \left(\frac{\langle x, y\rangle}{\|x\|\|y\|}\right)-\epsilon \leq d_{H}(f(x), f(y)) \leq \arccos \left(\frac{\langle x, y\rangle}{\|x\|\|y\|}\right)+\epsilon$ using only $M=O\left(\frac{1}{\epsilon^{2}}\left(K \log N+K \log \frac{1}{\epsilon}\right)\right)$ measurements

Binary Stable Embedding

Matrices w/ i.i.d. Gaussian entries work w/ i.i.d. Bernoulli they don't always

Sufficient information for sparse recovery (previous part)
Embedding does not preserve amplitudes

Is embedding rate-efficient?

- Plan, Y. and Vershynin, R., "Dimension reduction by random hyperplane tessellations," preprint, arXiv:1111.4452, 2011.
- Ai, A., Lapanowski, A., Plan, Y., Vershynin, R, "One-bit compressed sensing with non-Gaussian measurements", Linear Algebra and Applications, to appear.

Information in 1-bit Measurements

Chance of intersection increasingly smaller Embedding rate-inefficient!

Quantized J-L Embeddings

- Li M., Rane S., and Boufounos P. T., "Quantized embeddings of scale-invariant image features for mobile augmented reality," IEEE 14th International Workshop on Multimedia Signal Processing (MMSP), Banff, Canada, Sept. 17-19, 2012

Johnson-Lindenstrauss With Quantization [w/ Li, Rane]

Consider $S \subset \mathbb{R}^{N}$ containing P points.
We can embed s in \mathbb{R}^{M} such that for all x, y in s :

$$
\begin{gathered}
(1-\epsilon)\|x-y\|_{2}-2^{-B+1} S \leq \\
\qquad \begin{array}{c}
\|Q(f(x))-Q(f(y))\|_{2} \\
\\
\leq(1+\epsilon)\|x-y\|_{2}+2^{-B+1} S \\
\text { using only } M=O\left(\frac{\log P}{\epsilon^{2}}\right) \text { dimensions } \\
\text { and } B \text { bits per dimension } \\
\text { (with appropriate normalizations/saturation levels) }
\end{array} .
\end{gathered}
$$

Total rate: $R=B M$

Quantized J-L at Fixed Rate

Given total rate: $R=M B$

How to assign B and M ? More M or more B ?
Larger B, less quantization distortion

Larger M, less J-L type distortion ϵ

$$
\epsilon=O(1 / \sqrt{M})
$$

Design tradeoff:

Number of projections vs. bits per projection

Exploring the Design Trade-off

Exploring the Design Trade-off

Fixed $M=256$

Fixed $R=M B=256$

IN PRACTICE

The Augmented Reality Problem

Server-side processing increasingly important (e.g. cloud computing, augmented reality)

Compression is necessary
Goal: detection; not image transmission
Q: Should we transmit the signal? Can we reduce the rate?

Signal/Image-based Retrieval

Feature Extraction

Science World at TELUS World of Science
Building
Directions

Science World at Telus World of Science, Vancouver is a science centre run by a not-for-profit organization in Vancouver, British Columbia, Canada. Whipoda

Opened: 1989
Hours: Wednesday hours 10:00 am-5:00 pm - See all
Address: 1455 Quebec St, Yancouver, BC V6A 327, Canada
Phone: +1 604-443-7440
Architects: Buckminste

zaad $\begin{array}{r}\text { Applat } \\ 25\end{array}$
22 193 Google reviews

Signal/Image Database

Detection/Classification Pipeline (typical)

Detection/Classification: Based on distance/inner product

Detection/Classification Pipeline (efficient)

Features transmission

Detection/Classification: Based on distance/inner product
Goal: rate-efficient distance-preserving transmission

ZuBuD: Zurich Buildings Database

1005 images: 201 buildings from 5 viewpoints each 804 images (4 viewpoints per building) in server 201 query images (1 viewpoint per building)

Server Database

Success Probability

- Yeo C., Ahammad P., and Ramchandran K., "Coding of image feature descriptors for distributed rate-efficient visual correspondences," International Journal of Computer Vision, vol. 94, pp. 267-281, 2011, 10.1007/s11263-011-0427-1.
- Min K., Yang L., Wright J., Wu L., Hua X.-S., and Ma Y., "Compact projection: Simple and efficient near neighbor search with practical memory requirements," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2010.

Success Probability with Fixed Rate

Information Scalability

Inference relies on clusters of signals
Large distances not necessary to determine clusters and nearest neighbors

Should not spend bits encoding large distances!
But how?

UNIVERSAL QUANTIZED EMBEDDINGS

What can a bit tell us?

3 bit quantization intervals
$1^{\text {st }}$ bit (MSB)
$2^{\text {nd }}$ bit
$3^{\text {rd }}$ bit (LSB)

What can a bit tell us?

Rate-Efficient Scalar Quantization

Non-monotonic quantizer: Multiple intervals quantize to same value
(Focus on 1-bit quantizer today)
measurements
(w/ i.i.d. gaussian matrix)

- Boufounos P. T., "Universal Rate-Efficient Scalar Quantization," IEEE Trans. Info. Theory, v. 58, no. 3, pp. 1861-1872, March, 2012.

Quantizer Geometry (1 bit)

Quantization cells are not continuous Signal subspace intersects most of them

Pairs of Signals, Single Measurement

Pairs of Signals, Single Measurement

$P\left(q=q^{\prime}\right)$: probability that a single measurement is consistent for a pair of signals, given their distance d

In other words:
Hamming distance of embedding is proportional to ℓ_{2} distance up to a point

Embedding Properties

For all x, y in s :
$g(d)-\epsilon \leq d_{H}(f(x), f(y)) \leq g(d)+\epsilon$
$g(d)=1-P_{c \mid d}$
as long as $M=O\left(\frac{1}{\epsilon^{2}} \log P\right)$

- Boufounos P. T. and Rane S., "Secure Binary Embeddings for Privacy Preserving Nearest Neighbors," Proc. Workshop on Information Forensics and Security (WIFS), Foz do Iguaçu, Brazil, November 29 - December 2, 2011.

Error Behavior

$$
g(d)-\epsilon \leq d_{H}(f(x), f(y)) \leq g(d)+\epsilon
$$

"Linear" region: $\ell_{2} \propto d_{H}$, slope controlled by Δ

"Flat" region: no distance information

Error Behavior

$$
\begin{aligned}
& g(d)-\epsilon \leq d_{H}(f(x), f(y)) \leq g(d)+\epsilon \\
& M=O\left(\frac{1}{\left(\epsilon^{2}\right)} \xrightarrow{\log P)} \quad \begin{array}{l}
\text { Similar trade-off as } \mathrm{J}-\mathrm{L} \\
\text { but on } g(d)=1-P_{c l d}
\end{array}\right.
\end{aligned}
$$

Distance estimate: $\widehat{d}=g^{-1}\left(d_{H}(f(x), f(y))\right)$
Estimate ambiguity: $\widehat{d}-\frac{\epsilon}{g^{\prime}(\widehat{d})} \lesssim d \lesssim \widehat{d}+\frac{\epsilon}{g^{\prime}(\widehat{d})}$
Properties (slope) controlled by choice of Δ

Error Behavior

$$
g(d)-\epsilon \leq d_{H}(f(x), f(y)) \leq g(d)+\epsilon
$$

Large Δ : small slope, more ambiguity, preserves larger distances

Small Δ : large slope, less ambiguity, preserves smaller distances

- Boufounos P. T. and Rane S., "Efficient Coding of Signal Distances Using Universal Quantized Embeddings," Proc. Data Compression Conference (DCC), Snowbird, UT, March 20-22, 2013.

IN PRACTICE

In practice

In practice

In practice

BEYOND EMBEDDINGS

Reconstruction

- Consistent reconstruction: find a signal that quantizes to same bits, i.e.,

$$
\widehat{\mathbf{x}} \text { s.t. } \mathbf{q}=Q\left(\Delta^{-1}(\Phi \widehat{\mathbf{x}}+\mathbf{w})\right)
$$

- Very good theoretical guarantees
- Exponential error decay with number of bits $\varepsilon=O\left(c^{-B}\right)$
- Reconstruction is a very hard problem
- Seems to have combinatorial complexity
- Probably NP
- Need to enable efficient reconstruction
- Classical methods exploit bit hierarchy to make problem convex
- Should maintain theoretical guarantees
- Solution: Construct bit hierarchy; sub-problems become convex
- Boufounos, P.T., "Hierarchical Distributed Scalar Quantization", Proc. International Conference on Sampling Theory and Applications (SampTA), Singapore, May 2011

Hierarchical Measurements

Hierarchical Measurements

Hierarchical Measurements

Hierarchical Measurements

Reconstruction

Sampling

- Given uncertainty pick Δ such that reconstruction is convex
- Take enough measurements to scale uncertainty by $\alpha<1$
- Scale $\Delta \leftarrow \alpha \Delta$ for next set of measurements
- Iterate until desired precision

Reconstruction SNR

Reconstruction

- For first set of measurements formulate convex reconstruction
- Solve for consistency
- Use solution to incorporate next set of measurements and determine consistency constraints
- Iterate until all measurement sets are incorporated

Privacy Preserving Properties

Assume we have encoding of two signals x, y, but not \mathbf{A} and \mathbf{w} What does the encoding reveal about their relationship?

$$
I(f(x) ; f(y) \mid d) \leq 10 M e^{-\left(\frac{\pi \sigma d}{\Delta}\right)^{2}}
$$

Mutual information decays very fast with d.
Information theoretic privacy-preserving guarantee:

When signals are far apart, encoding reveals nothing about their relationship!

Very useful for security applications (e.g., privacy-preserving nearest neighbors, secure biometric authentication)

Further Reading

- Johnson W. and Lindenstrauss J., "Extensions of Lipschitz mappings into a Hilbert space," Contemporary Mathematics, vol. 26, pp. 189-206, 1984.
- Andoni, A. and Indyk, P., "Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions," Comm. ACM, vol. 51, no. 1, pp. 117-122, 2008.
- Datar M., Immorlica N., Indyk P., and Mirrokni V., "Locality-Sensitive Hashing Scheme Based on p-Stable D istributions," Proc. Symposium on Computational Geometry, 2004
- Jacques L., Laska J. N., Boufounos P. T., Baraniuk R. J., "Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors," IEEE Trans. Info. Theory, v. 59, no. 4, April, 2013.
- Plan, Y. and Vershynin, R., "Dimension reduction by random hyperplane tessellations," preprint, arXiv:1111.4452, 2011.
- Ai, A., Lapanowski, A., Plan, Y., Vershynin, R, "One-bit compressed sensing with non-Gaussian measurements", Linear Algebra and Applications, to appear.
- Boufounos P. T., "Universal Rate-Efficient Scalar Quantization," IEEE Trans. Info. Theory, v. 58, no. 3, pp. 1861-1872, March, 2012.
- Boufounos P. T. and Rane S., "Secure Binary Embeddings for Privacy Preserving Nearest Neighbors," Proc. Workshop on Information Forensics and Security (WIFS), Foz do Iguaçu, Brazil, November 29 - December 2, 2011.
- Li M., Rane S., and Boufounos P. T., "Quantized embeddings of scale-invariant image features for mobile augmented reality," IEEE 14th International Workshop on Multimedia Signal Processing (MMSP), Banff, Canada, Sept. 17-19, 2012
- Boufounos P. T. and Rane S., "Efficient Coding of Signal Distances Using Universal Quantized Embeddings," Proc. Data Compression Conference (DCC), Snowbird, UT, March 20-22, 2013.
- Yeo C., Ahammad P., and Ramchandran K., "Coding of image feature descriptors for distributed rate-efficient visual correspondences," International Journal of Computer Vision, vol. 94, pp. 267-281, 2011, 10.1007/s11263-011-0427-1.
- Min K., Yang L., Wright J., Wu L., Hua X.-S., and Ma Y., "Compact projection: Simple and efficient near neighbor search with practical memory requirements," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2010.

Final Thoughts/Discussion

- Quantization very important in signal processing
- Signal acquisition systems
- Information embedding/transmission
- Information hiding, security, privacy
- Not your college-level quantization
- High-dimensional geometrical problem
- Additive noise model inadequate
- Tight bounds with better models
- Consistency is important
- Saturation can be useful
- Non-linear concentration of measure occurs
- Quantization is a very active area of research
- 1-bit CS/Quantized CS
- Sigma-Delta for compressive and non-compressive systems
- Geometry of non-linear inverse problem solving
- Quantized Embeddings
- Vector Quantization (a whole other tutorial)

Still Open and Interesting (a small sampling...)

- Oversampling and Quantization
- Beyond consistency: quantization with additive noise
- Quantized CS
- Interaction between sparsity/sensing/quantization (signal/measurement model)
- 1-bit CS algorithmic convergence guarantees (e.g. BIHT, RSS, MSP)
- Consistent QCS theory for any bitdepth (1-bit to high-res)
- Optimal quantizer design for non-gaussian measurements
- Rate-distortion performance: CS for compression
- Sigma-Delta CS for 1-bit quantization
- Vector Quantization of CS measurements
- Universal Quantization and Embeddings
- General reconstruction algorithms: is reconstruction possible?
- Embedding guarantees for more general embeddings (e.g. multi-bit)
- Embedding behavior design
- Tighter connections with LSH
- Other security/privacy-preserving properties

Today's Topics

1. Modern Scalar Quantization
2. Compressive Sensing Overview
3. Compressive Sensing and Quantization
4. 1-bit Compressive Sensing
5. Locality Sensitive Hashing and Universal Quantization

For more:

Repository: http://www.boufounos.com/resources-on-quantization/ http://dsp.rice.edu/1bitCS/ http://nuit-blanche.blogspot.com http://nuit-blanche.blogspot.com/search/label/1bit http://nuit-blanche.blogspot.com/search/label/QuantCS http://www.boufounos.com/research/quantization/

Questions/Comments?

petros@boufounos.com http://boufounos.com
laurent.jacques@uclouvain.be http://perso.uclouvain.be/laurent.jacques/

[^0]: - Pseudo-inverse

 $$
 A^{\dagger}=\left(A^{*} A\right)^{-1} A^{*}
 $$

